FPDF Library

PDF generator

PowerShell Get-Help cmdlet
PS C:\> Get-Help

Full credit is given to all the above companies including
the Operating System that this PDF file was generated!

Windows PowerShell Get-Help on Cmdlet 'Start-Job'

PS:\>Get-HELP Start-Job -Full

NAME

Start-Job

SYNOPSIS

Starts a PowerShell background job.

SYNTAX
Start-Job [-ScriptBlock] <System.Management.Automation.ScriptBlock> [[-InitializationScript]
<System.Management.Automation.ScriptBlock>] [-ArgumentList
<System.Object[]>] [-Authentication {Default | Basic | Negotiate | NegotiateWithImplicitCredential | Credssp | Digest |
Kerberos}] [-Credential
<System.Management.Automation.PSCredential>] [-InputObject <System.Management.Automation.PSObject>] [-Name
<System.String>] [-PSVersion <System.Version>] [-RunAs32]

[<CommonParameters>]

Start-Job [[-InitializationScript] <System.Management.Automation.ScriptBlock>] [-ArgumentList <System.Object[]>]
[-Authentication {Default | Basic | Negotiate |
NegotiateWithimplicitCredential | Credssp | Digest | Kerberos}] [-Credential

<System.Management.Automation.PSCredential>] [-InputObject Page 1/14

<System.Management.Automation.PSObject>] -LiteralPath <System.String> [-Name <System.String>] [-PSVersion

<System.Version>] [-RunAs32] [<CommonParameters>]

Start-Job [-FilePath] <System.String> [[-InitializationScript] <System.Management.Automation.ScriptBlock>]
[-ArgumentList <System.Object[]>] [-Authentication {Default
| Basic | Negotiate | NegotiateWithimplicitCredential | Credssp | Digest | Kerberos}] [-Credential
<System.Management.Automation.PSCredential>] [-InputObject
<System.Management.Automation.PSObject>] [-Name <System.String>] [-PSVersion <System.Version>] [-RUnAs32]

[<CommonParameters>]

Start-Job [-DefinitionName] <System.String> [[-DefinitionPath] <System.String>] [[-Type] <System.String>]

[<CommonParameters>]

DESCRIPTION

The “Start-Job™ cmdlet starts a PowerShell background job on the local computer.

A PowerShell background job runs a command without interacting with the current session. When you start a background
job, a job object returns immediately, even if

the job takes an extended time to finish. You can continue to work in the session without interruption while the job runs.

The job object contains useful information about the job, but it doesn't contain the job results. When the job finishes, use
the "Receive-Job™ cmdlet to get the

results of the job. For more information about background jobs, see about_Jobs (./About/about_Jobs.md).

To run a background job on a remote computer, use the AsJob parameter that is available on many cmdlets, or use the
“Invoke-Command’ cmdlet to run a “Start-Job’

command on the remote computer. For more information, see about_Remote_Jobs (./About/about_Remote_Jobs.md).

Starting in PowerShell 3.0, “Start-Job’™ can start instances of custom job types, such as scheduled jobs. For information
about how to use "Start-Job" to start jobs

with custom types, see the help documents for the job type feature.

Page 2/14

The default working directory for jobs is hardcoded. The Windows default is "$HOME\Documents™ and on Linux or
macOS the default is '$HOME'. The script code running in

the background job needs to manage the working directory as needed.

PARAMETERS
-ArgumentList <System.Object[]>
Specifies an array of arguments, or parameter values, for the script that is specified by the FilePath parameter or a
command specified with the ScriptBlock

parameter.

Arguments must be passed to ArgumentList as single-dimension array argument. For example, a comma-separated
list. For more information about the behavior of

ArgumentList , see about_Splatting (about/about_Splatting.md#splatting-with-arrays).

Required? false
Position? named
Default value None

Accept pipeline input? False

Accept wildcard characters? false

-Authentication <System.Management.Automation.Runspaces.AuthenticationMechanism>

Specifies the mechanism that is used to authenticate user credentials.

The acceptable values for this parameter are as follows:

- Default

- Basic

- Credssp

- D|gest Page 3/14

- Kerberos

- Negotiate

- NegotiateWithimplicitCredential

The default value is Default.

CredSSP authentication is available only in Windows Vista, Windows Server 2008, and later versions of the Windows

operating system.

For more information about the values of this parameter, see AuthenticationMechanism

(/dotnet/api/system.management.automation.runspaces.authenticationmechanism).

> [ICAUTION] > Credential Security Support Provider (CredSSP) authentication, in which the user's credentials are >
passed to a remote computer to be

authenticated, is designed for commands that require > authentication on more than one resource, such as accessing
a remote network share. This mechanism >

increases the security risk of the remote operation. If the remote computer is compromised, the > credentials that are
passed to it can be used to control the

network session.

Required? false
Position? named
Default value Default

Accept pipeline input? False

Accept wildcard characters? false

-Credential <System.Management.Automation.PSCredential>
Specifies a user account that has permission to perform this action. If the Credential parameter isn't specified, the

command uses the current user's credentials. Page 4/14

Type a user name, such as User01 or Domain01\UserO1 , or enter a PSCredential object generated by the
"Get-Credential” cmdlet. If you type a user name, you're

prompted to enter the password.

Credentials are stored in a PSCredential (/dotnet/api/system.management.automation.pscredential)object and the
password is stored as a SecureString

(/dotnet/api/system.security.securestring).

> [INOTE] > For more information about SecureString data protection, see > How secure is SecureString?

(/dotnet/api/system.security.securestring#how-secure-is-securestring).

Required? false
Position? named
Default value Current user

Accept pipeline input? False

Accept wildcard characters? false

-DefinitionName <System.String>
Specifies the definition name of the job that this cmdlet starts. Use this parameter to start custom job types that have a

definition name, such as scheduled jobs.

When you use “Start-Job’ to start an instance of a scheduled job, the job starts immediately, regardless of job triggers
or job options. The resulting job
instance is a scheduled job, but it isn't saved to disk like triggered scheduled jobs. You can't use the ArgumentList
parameter of “Start-Job" to provide values
for parameters of scripts that run in a scheduled job. For more information, see about Scheduled Jobs

(../PSScheduledJob/About/about_Scheduled_Jobs.md).

This parameter was introduced in PowerShell 3.0.

Required? true

Position? 0 Page 5/14

Default value None
Accept pipeline input? False

Accept wildcard characters? false

-DefinitionPath <System.String>

Specifies path of the definition for the job that this cmdlet starts. Enter the definition path. The concatenation of the

values of the DefinitionPath and

DefinitionName parameters is the fully qualified path of the job definition. Use this parameter to start custom job types
that have a definition path, such as

scheduled jobs.

For scheduled jobs, the value of the DefinitionPath parameter is

"$HOME\AppData\Local\Windows\PowerShell\ScheduledJob".

This parameter was introduced in PowerShell 3.0.

Required? false
Position? 1
Default value None

Accept pipeline input? False

Accept wildcard characters? false

-FilePath <System.String>

Specifies a local script that “Start-Job™ runs as a background job. Enter the path and file name of the script or use the

pipeline to send a script path to

“Start-Job’. The script must be on the local computer or in a folder that the local computer can access.

When you use this parameter, PowerShell converts the contents of the specified script file to a script block and runs

the script block as a background job.

Required? true

Position? 0

Default value None Page 6/14

Accept pipeline input? False

Accept wildcard characters? false

-InitializationScript <System.Management.Automation.ScriptBlock>

Specifies commands that run before the job starts. To create a script block, enclose the commands in curly braces

(-

Use this parameter to prepare the session in which the job runs. For example, you can use it to add functions,

snap-ins, and modules to the session.

Required? false
Position? 1
Default value None

Accept pipeline input? False

Accept wildcard characters? false

-InputObject <System.Management.Automation.PSObject>

Specifies input to the command. Enter a variable that contains the objects, or type a command or expression that

generates the objects.

In the value of the ScriptBlock parameter, use the “$input™ automatic variable to represent the input objects.

Required? false
Position? named
Default value None

Accept pipeline input? True (ByValue)

Accept wildcard characters? false

-LiteralPath <System.String>

Specifies a local script that this cmdlet runs as a background job. Enter the path of a script on the local computer.

“Start-Job™ uses the value of the LiteralPath parameter exactly as it's typed. No characters are interpreted as wildcard

characters. If the path includes escape Page 7/14

characters, enclose it in single quotation marks. Single quotation marks tell PowerShell not to interpret any characters

as escape sequences.

Required? true
Position? named
Default value None

Accept pipeline input? False

Accept wildcard characters? false

-Name <System.String>

Specifies a friendly name for the new job. You can use the name to identify the job to other job cmdlets, such as the

“Stop-Job” cmdlet.

The default friendly name is "Job#, where “#’ is an ordinal number that is incremented for each job.

Required? false
Position? named
Default value None

Accept pipeline input? True (ByPropertyName)

Accept wildcard characters? false
-PSVersion <System.Version>
Specifies a version. “Start-Job" runs the job with the version of PowerShell. The acceptable values for this parameter

are: 2.0 and "3.0".

This parameter was introduced in PowerShell 3.0.

Required? false
Position? named
Default value None

Accept pipeline input? False

Accept wildcard characters? false

Page 8/14

-RunAs32 <System.Management.Automation.SwitchParameter>

Indicates that "Start-Job™ runs the job in a 32-bit process. RunAs32 forces the job to run in a 32-bit process, even on a

64-bit operating system.

On 64-bit versions of Windows 7 and Windows Server 2008 R2, when the "Start-Job™ command includes the RunAs32
parameter, you can't use the Credential parameter to

specify the credentials of another user.

Required? false
Position? named
Default value False

Accept pipeline input? False

Accept wildcard characters? false

-ScriptBlock <System.Management.Automation.ScriptBlock>
Specifies the commands to run in the background job. To create a script block, enclose the commands in curly braces
(C{}). Use the “$input” automatic variable to

access the value of the InputObject parameter. This parameter is required.

Required? true
Position? 0
Default value None

Accept pipeline input? False

Accept wildcard characters? false

-Type <System.String>

Specifies the custom type for jobs started by “Start-Job™. Enter a custom job type name, such as PSScheduledJob for
scheduled jobs or PSWorkflowJob for workflows

jobs. This parameter isn't valid for standard background jobs.

This parameter was introduced in PowerShell 3.0.

Required? false Page 9/14

Position? 2
Default value None
Accept pipeline input? False

Accept wildcard characters? false

<CommonParameters>
This cmdlet supports the common parameters: Verbose, Debug,
ErrorAction, ErrorVariable, WarningAction, WarningVariable,
OutBuffer, PipelineVariable, and OutVariable. For more information, see

about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

INPUTS

System.String

You can pipe an object with the Name property to the Name parameter to this cmdlet. For example, you can pipe a

Filelnfo object from “Get-Childltem’.

OUTPUTS
System.Management.Automation.PSRemotingJob

This cmdlet returns a PSRemotingJob object representing the job that it started.

NOTES

Windows PowerShell includes the following aliases for “Start-Job:

- "sajb’

To run in the background, “Start-Job™ runs in its own session in the current session. When you use the

“Invoke-Command” cmdlet to run a “Start-Job™ command in a

session on a remote computer, “Start-Job™ runs in a session in the remote session.

Page 10/14

Start-Job -ScriptBlock { Get-Process -Name powershell }

Id Name PSJobTypeName State HasMoreData Location Command

1 Jobl BackgroundJob Running True localhost Get-Process -Name powershell

“Start-Job™ uses the ScriptBlock parameter to run “Get-Process™ as a background job. The Name parameter specifies to
find PowerShell processes, ‘powershell’. The job

information is displayed and PowerShell returns to a prompt while the job runs in the background.

To view the job's output, use the "Receive-Job™ cmdlet. For example, "Receive-Job -Id 1°.

$jobWRM = Invoke-Command -ComputerName (Get-Content -Path C:\Servers.txt) -ScriptBlock {

Get-Service -Name WIinRM } -JobName WinRM -ThrottleLimit 16 -AsJob

A job that uses “Invoke-Command’ is created and stored in the “$jobWRM" variable. “Invoke-Command™ uses the
ComputerName parameter to specify the computers where the

job runs. “Get-Content™ gets the server names from the "C:\Servers.txt™ file.

The ScriptBlock parameter specifies a command that “Get-Service™ gets the WinRM service. The JobName parameter
specifies a friendly name for the job, WinRM . The
ThrottleLimit parameter limits the number of concurrent commands to 16. The AsJob parameter starts a background job

that runs the command on the servers.

$j = Start-Job -ScriptBlock { Get-WinEvent -Log System } -Credential Domain01\User01

$j | Select-Object -Property *

State : Completed

HasMoreData : True Page 11/14

StatusMessage :

Location :localhost

Command : Get-WinEvent -Log System
JobStatelnfo : Completed

Finished : System.Threading.ManualResetEvent
Instanceld : 27ce3fd9-40ed-488a-99e5-679cd91b9dd3
Id 18

Name : Job18

ChildJobs : {Job19}

PSBeginTime : 8/8/2019 14:41:57

PSEndTime : 8/8/2019 14:42:07
PSJobTypeName : BackgroundJob

Output {3

Error {3

Progress : {}

Verbose {3
Debug {3
Warning {3

Information : {}

“Start-Job™ uses the ScriptBlock parameter to run a command that specifies “Get-WinEvent™ to get the System log. The
Credential parameter specifies a domain user

account with permission to run the job on the computer. The job object is stored in the "$j" variable.

The object in the "$j" variable is sent down the pipeline to "Select-Object’. The Property parameter specifies an asterisk

(**") to display all the job object's

properties.

Start-Job -FilePath C:\Scripts\Sample.ps1

“Start-Job” uses the FilePath parameter to specify a script file that's stored on the local computer.

——————— Example 5: Get a process using a background job ------- Page 12/14

Start-Job -Name PShellJob -ScriptBlock { Get-Process -Name PowerShell }

“Start-Job™ uses the Name parameter to specify a friendly job name, PShellJob . The ScriptBlock parameter specifies
"Get-Process’ to get processes with the name
PowerShell .

-- Example 6: Collect and save data by using a background job --

Start-Job -Name GetMappingFiles -InitializationScript {Import-Module -Name MapFunctions} -ScriptBlock {

Get-Map -Name * | Set-Content -Path D:\Maps.tif } -RunAs32

“Start-Job™ uses the Name parameter to specify a friendly job name, GetMappingFiles . The InitializationScript parameter
runs a script block that imports the
MapFunctions module. The ScriptBlock parameter runs "Get-Map™ and “Set-Content” saves the data in the location
specified by the Path parameter. The RunAs32 parameter

runs the process as 32-bit, even on a 64-bit operating system.

Start-Job -ScriptBlock { Get-Content -Path $input } -InputObject "C:\Servers.ixt"

Receive-Job -Name Job45 -Keep

Server01
Server02
Server03

Server04

“Start-Job™ uses the ScriptBlock parameter to run “Get-Content™ with the “$input’ automatic variable. The “$input’ variable
gets objects from the InputObject
parameter. "Receive-Job™ uses the Name parameter to specify the job and outputs the results. The Keep parameter
saves the job output so it can be viewed again during
the PowerShell session.

Example 8: Use the ArgumentList parameter to specify an array

Page 13/14

Start-Job -ScriptBlock { Get-Process -Name $args } -ArgumentList powershell, pwsh, notepad

Id Name PSJobTypeName State HasMoreData Location Command

1 Jobl BackgroundJob Running True localhost Get-Process -Name $args

The “Start-Job™ cmdlet uses the ScriptBlock parameter to run a command. “Get-Process™ uses the Name parameter to
specify the automatic variable “$args’. The
ArgumentList parameter passes the array of process names to “$args’. The process names powershell, pwsh, and

notepad are processes running on the local computer.

To view the job's output, use the "Receive-Job™ cmdlet. For example, "Receive-Job -Id 1°.

RELATED LINKS
Online Version:

https://learn.microsoft.com/powershell/module/microsoft.powershell.core/start-job?view=powershell-5.1&WT.mc_id=ps-geth
elp

about_Arrays

about_Automatic_Variables

about_Jobs

about_Job_Details

about_Remote_Jobs

Get-Job

Invoke-Command

Receive-Job

Remove-Job

Resume-Job

Stop-Job

Suspend-Job

Wait-Job

Page 14/14

