
Windows PowerShell Get-Help on Cmdlet 'Stop-Job'

PS:\>Get-HELP Stop-Job -Full

NAME

 Stop-Job

SYNOPSIS

 Stops a PowerShell background job.

SYNTAX

 Stop-Job [-Filter] <System.Collections.Hashtable> [-PassThru] [-Confirm] [-WhatIf] [<CommonParameters>]

 Stop-Job [-Id] <System.Int32[]> [-PassThru] [-Confirm] [-WhatIf] [<CommonParameters>]

 Stop-Job [-InstanceId] <System.Guid[]> [-PassThru] [-Confirm] [-WhatIf] [<CommonParameters>]

 Stop-Job [-Job] <System.Management.Automation.Job[]> [-PassThru] [-Confirm] [-WhatIf] [<CommonParameters>]

 Stop-Job [-Name] <System.String[]> [-PassThru] [-Confirm] [-WhatIf] [<CommonParameters>]

 Stop-Job [-State] {NotStarted | Running | Completed | Failed | Stopped | Blocked | Suspended | Disconnected |

Suspending | Stopping | AtBreakpoint} [-PassThru] Page 1/11

 [-Confirm] [-WhatIf] [<CommonParameters>]

DESCRIPTION

 The `Stop-Job` cmdlet stops PowerShell background jobs that are in progress. You can use this cmdlet to stop all jobs or

stop selected jobs based on their name, ID,

 instance ID, or state, or by passing a job object to `Stop-Job`.

 You can use `Stop-Job` to stop background jobs, such as those that were started by using the `Start-Job` cmdlet or the

AsJob parameter of any cmdlet. When you stop a

 background job, PowerShell completes all tasks that are pending in that job queue and then ends the job. No new tasks

are added to the queue after this command is

 submitted.

 This cmdlet does not delete background jobs. To delete a job, use the `Remove-Job` cmdlet.

 Starting in Windows PowerShell 3.0, `Stop-Job` also stops custom job types, such as WorkflowJobs and instances of

ScheduledJobs . To enable `Stop-Job` to stop a job

 with custom job type, import the module that supports the custom job type into the session before you run a `Stop-Job`

command, either by using the `Import-Module`

 cmdlet or by using or getting a cmdlet in the module. For information about a particular custom job type, see the

documentation of the custom job type feature.

PARAMETERS

 -Filter <System.Collections.Hashtable>

 Specifies a hash table of conditions. This cmdlet stops jobs that satisfy every condition. Enter a hash table where the

keys are job properties and the values are

 job property values.

 This parameter works only on custom job types, such as WorkflowJobs and ScheduledJobs . It does not work on

standard background jobs, such as those created by

 using the `Start-Job` cmdlet. For information about support for this parameter, see the help topic for the job type.Page 2/11

 This parameter was introduced in Windows PowerShell 3.0.

 Required? true

 Position? 0

 Default value None

 Accept pipeline input? True (ByPropertyName)

 Accept wildcard characters? false

 -Id <System.Int32[]>

 Specifies the IDs of jobs that this cmdlet stops. The default is all jobs in the current session.

 The ID is an integer that uniquely identifies the job in the current session. It is easier to remember and type than the

instance ID, but it is unique only in the

 current session. You can type one or more IDs, separated by commas. To find the ID of a job, type `Get-Job`.

 Required? true

 Position? 0

 Default value All jobs

 Accept pipeline input? True (ByPropertyName)

 Accept wildcard characters? false

 -InstanceId <System.Guid[]>

 Specifies the instance IDs of jobs that this cmdlet stops. The default is all jobs.

 An instance ID is a GUID that uniquely identifies the job on the computer. To find the instance ID of a job, use

`Get-Job`.

 Required? true

 Position? 0

 Default value All jobs

 Accept pipeline input? True (ByPropertyName)

 Accept wildcard characters? false Page 3/11

 -Job <System.Management.Automation.Job[]>

 Specifies the jobs that this cmdlet stops. Enter a variable that contains the jobs or a command that gets the jobs. You

can also use a pipeline operator to submit

 jobs to the `Stop-Job` cmdlet. By default, `Stop-Job` deletes all jobs that were started in the current session.

 Required? true

 Position? 0

 Default value All jobs

 Accept pipeline input? True (ByPropertyName, ByValue)

 Accept wildcard characters? false

 -Name <System.String[]>

 Specifies friendly names of jobs that this cmdlet stops. Enter the job names in a comma-separated list or use wildcard

characters (`*`) to enter a job name

 pattern. By default, `Stop-Job` stops all jobs created in the current session.

 Because the friendly name is not guaranteed to be unique, use the WhatIf and Confirm parameters when stopping jobs

by name.

 Required? true

 Position? 0

 Default value All jobs

 Accept pipeline input? True (ByPropertyName)

 Accept wildcard characters? true

 -PassThru <System.Management.Automation.SwitchParameter>

 Returns an object representing the item with which you are working. By default, this cmdlet does not generate any

output.

 Required? false

 Position? named

 Default value False Page 4/11

 Accept pipeline input? False

 Accept wildcard characters? false

 -State <System.Management.Automation.JobState>

 Specifies a job state. This cmdlet stops only jobs in the specified state. The acceptable values for this parameter are:

 - `NotStarted`

 - `Running`

 - `Completed`

 - `Failed`

 - `Stopped`

 - `Blocked`

 - `Suspended`

 - `Disconnected`

 - `Suspending`

 - `Stopping`

 For more information about job states, see JobState Enumeration

(/dotnet/api/system.management.automation.jobstate).

 Required? true

 Position? 0 Page 5/11

 Default value All jobs

 Accept pipeline input? True (ByPropertyName)

 Accept wildcard characters? false

 -Confirm <System.Management.Automation.SwitchParameter>

 Prompts you for confirmation before running the cmdlet.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -WhatIf <System.Management.Automation.SwitchParameter>

 Shows what would happen if the cmdlet runs. The cmdlet is not run.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

INPUTS

 System.Management.Automation.RemotingJob

 You can pipe a job object to this cmdlet.

 Page 6/11

OUTPUTS

 None

 By default, this cmdlet returns no output.

 System.Management.Automation.PSRemotingJob

 When you use the PassThru parameter, this cmdlet returns a job object.

NOTES

 Windows PowerShell includes the following aliases for `Stop-Job`:

 - `spjb`

 Example 1: Stop a job on a remote computer with Invoke-Command

 $s = New-PSSession -ComputerName Server01 -Credential Domain01\Admin02

 $j = Invoke-Command -Session $s -ScriptBlock {Start-Job -ScriptBlock {Get-EventLog -LogName System}}

 Invoke-Command -Session $s -ScriptBlock { Stop-job -Job $Using:j }

 This example shows how to use the `Stop-Job` cmdlet to stop a job that is running on a remote computer.

 Because the job was started with the `Invoke-Command` cmdlet to run a `Start-Job` command remotely, the job object is

stored on the remote computer. You must use

 another `Invoke-Command` command to run a `Stop-Job` command remotely. For more information about remote

background jobs, see about_Remote_Jobs.

 The first command creates a PowerShell session (PSSession) on the Server01 computer, and then stores the session

object in the `$s` variable. The command uses the

 credentials of a domain administrator.

 The second command uses the `Invoke-Command` cmdlet to run a `Start-Job` command in the session. The command inPage 7/11

the job gets all of the events in the System event

 log. The resulting job object is stored in the `$j` variable.

 The third command stops the job. It uses the `Invoke-Command` cmdlet to run a `Stop-Job` command in the PSSession

on Server01. Because the job objects are stored in

 `$j`, which is a variable on the local computer, the command uses the Using scope modifier to identify `$j` as a local

variable. For more information about the Using

 scope modifier, see about_Remote_Variables (about/about_Remote_Variables.md).

 When the command finishes, the job is stopped and the PSSession in `$s` is available for use.

 --------------- Example 2: Stop a background job ---------------

 Stop-Job -Name "Job1"

 This command stops the `Job1` background job.

 ----------- Example 3: Stop several background jobs -----------

 Stop-Job -Id 1, 3, 4

 This command stops three jobs. It identifies them by their IDs .

 ------------- Example 4: Stop all background jobs -------------

 Get-Job | Stop-Job

 This command stops all of the background jobs in the current session.

 --------- Example 5: Stop all blocked background jobs ---------

 Stop-Job -State Blocked

 This command stops all the jobs that are blocked.

 ------------- Example 6: Stop a job by instance ID -------------

 Get-Job | Format-Table ID, Name, Command, @{Label="State";Expression={$_.JobStateInfo.State}}, Page 8/11

 InstanceID -Auto

 Id Name Command State InstanceId

 -- ---- ------- ----- ----------

 1 Job1 start-service schedule Running 05abb67a-2932-4bd5-b331-c0254b8d9146

 3 Job3 start-service schedule Running c03cbd45-19f3-4558-ba94-ebe41b68ad03

 5 Job5 get-service s* Blocked e3bbfed1-9c53-401a-a2c3-a8db34336adf

 Stop-Job -InstanceId e3bbfed1-9c53-401a-a2c3-a8db34336adf

 These commands show how to stop a job based on its InstanceID .

 The first command uses the `Get-Job` cmdlet to get the jobs in the current session. The command uses a pipeline

operator (`|`) to send the jobs to a `Format-Table`

 command, which displays a table of the specified properties of each job. The table includes the InstanceID of each job. It

uses a calculated property to display the

 job state.

 The second command uses a `Stop-Job` command that has the InstanceID parameter to stop a selected job.

 ---------- Example 7: Stop a job on a remote computer ----------

 $j = Invoke-Command -ComputerName Server01 -ScriptBlock {Get-EventLog -LogName System} -AsJob

 $j | Stop-Job -PassThru

 Id Name State HasMoreData Location Command

 -- ---- ---- ----------- -------- -------

 5 Job5 Stopped True user01-tablet Get-EventLog -LogName Sy...

 This example shows how to use the `Stop-Job` cmdlet to stop a job that is running on a remote computer.

 Because the job was started with the AsJob parameter of the `Invoke-Command` cmdlet, the Job object is located on the

local computer, even though the job runs on the

 remote computer. Therefore, you can use a local `Stop-Job` command to stop the job. Page 9/11

 The first command uses the `Invoke-Command` cmdlet to start a background job on the Server01 computer. The

command uses the AsJob parameter to run the remote command

 as a background job.

 This command returns a job object, which is the same job object that the `Start-Job` cmdlet returns. The command saves

the job object in the `$j` variable.

 The second command uses a pipeline operator to send the job in the `$j` variable to `Stop-Job`. The command uses the

PassThru parameter to direct `Stop-Job` to return

 a job object. The job object display confirms that the state of the job is Stopped.

 For more information about remote background jobs, see about_Remote_Jobs (About/about_Remote_Jobs.md).

RELATED LINKS

 Online Version:

https://learn.microsoft.com/powershell/module/microsoft.powershell.core/stop-job?view=powershell-5.1&WT.mc_id=ps-geth

elp

 Get-Job

 Invoke-Command

 Receive-Job

 Remove-Job

 Resume-Job

 Start-Job

 Suspend-Job

 Wait-Job

 about_Job_Details

 about_Remote_Jobs

 about_Remote_Variables

 about_Jobs

 about_Scopes

Page 10/11

Page 11/11

