
Windows PowerShell Get-Help on Cmdlet 'Write-Output'

PS:\>Get-HELP Write-Output -Full

NAME

 Write-Output

SYNOPSIS

 Writes the specified objects to the pipeline.

SYNTAX

 Write-Output [-InputObject] <System.Management.Automation.PSObject[]> [-NoEnumerate] [<CommonParameters>]

DESCRIPTION

 Writes the specified objects to the pipeline. If `Write-Output` is the last command in the pipeline, the objects are displayed

in the console.

 `Write-Output` sends objects to the primary pipeline, also known as the success stream . To send error objects to the

error stream, use `Write-Error`.

 This cmdlet is typically used in scripts to display strings and other objects on the console. One of the built-in aliases for

`Write-Output` is `echo` and similar to Page 1/5

 other shells that use `echo`. The default behavior is to display the output at the end of a pipeline. In PowerShell, it is

generally not necessary to use the cmdlet

 in instances where the output is displayed by default. For example, `Get-Process | Write-Output` is equivalent to

`Get-Process`. Or, `echo "Home directory: $HOME"`

 can be written, `"Home directory: $HOME"`.

 By default, `Write-Output` enumerates objects in a collection. However, `Write-Output` can also pass collections down the

pipeline as a single object with the

 NoEnumerate parameter.

PARAMETERS

 -InputObject <System.Management.Automation.PSObject[]>

 Specifies the objects to send down the pipeline. Enter a variable that contains the objects, or type a command or

expression that gets the objects.

 Required? true

 Position? 0

 Default value None

 Accept pipeline input? True (ByValue)

 Accept wildcard characters? false

 -NoEnumerate <System.Management.Automation.SwitchParameter>

 By default, the `Write-Output` cmdlet always enumerates its output. The NoEnumerate parameter suppresses the

default behavior, and prevents `Write-Output` from

 enumerating output. The NoEnumerate parameter has no effect if the command is wrapped in parentheses, because

the parentheses force enumeration. For example,

 `(Write-Output 1,2,3)` still enumerates the array.

 The NoEnumerate parameter is only useful within a pipeline. Trying to see the effects of NoEnumerate in the console is

problematic because PowerShell adds

 `Out-Default` to the end of every command line, which results in enumeration. But if you pipe `Write-Output

-NoEnumerate` to another cmdlet, the downstream cmdlet Page 2/5

 receives the collection object, not the enumerated items of the collection.

 > [!IMPORTANT] > There is an issue with this switch in Windows PowerShell that is fixed in PowerShell 6.2 and >

above. When using NoEnumerate and explicitly using

 the InputObject parameter, the command > still enumerates. To work around this, pass the InputObject argument(s)

positionally.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

INPUTS

 System.Management.Automation.PSObject

 You can pipe objects to this cmdlet.

OUTPUTS

 System.Management.Automation.PSObject

 This cmdlet returns the objects that are submitted as input.

NOTES

 Windows PowerShell includes the following aliases for `Write-Output`: Page 3/5

 - `echo`

 - `write`

 ----- Example 1: Get objects and write them to the console -----

 $P = Get-Process

 Write-Output $P

 ----------- Example 2: Pass output to another cmdlet -----------

 Write-Output "test output" | Get-Member

 ---------- Example 3: Suppress enumeration in output ----------

 Write-Output 1,2,3 | Measure-Object

 Count : 3

 ...

 Write-Output 1,2,3 -NoEnumerate | Measure-Object

 Count : 1

 ...

RELATED LINKS

 Online Version:

https://learn.microsoft.com/powershell/module/microsoft.powershell.utility/write-output?view=powershell-5.1&WT.mc_id=ps-Page 4/5

gethelp

 about_Output_Streams

 about_Redirection

 Tee-Object

 Write-Debug

 Write-Error

 Write-Host

 Write-Information

 Write-Progress

 Write-Verbose

 Write-Warning

Page 5/5

