
Windows PowerShell Get-Help on Cmdlet 'Write-Progress'

PS:\>Get-HELP Write-Progress -Full

NAME

 Write-Progress

SYNOPSIS

 Displays a progress bar within a PowerShell command window.

SYNTAX

 Write-Progress [-Activity] <System.String> [[-Status] <System.String>] [[-Id] <System.Int32>] [-Completed]

[-CurrentOperation <System.String>] [-ParentId

 <System.Int32>] [-PercentComplete <System.Int32>] [-SecondsRemaining <System.Int32>] [-SourceId <System.Int32>]

[<CommonParameters>]

DESCRIPTION

 The `Write-Progress` cmdlet displays a progress bar in a PowerShell command window that depicts the status of a

running command or script. You can select the

 indicators that the bar reflects and the text that appears above and below the progress bar.

Page 1/9

PARAMETERS

 -Activity <System.String>

 Specifies the first line of text in the heading above the status bar. This text describes the activity whose progress is

being reported.

 Required? true

 Position? 0

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -Completed <System.Management.Automation.SwitchParameter>

 Indicates whether the progress bar is visible. If this parameter is omitted, `Write-Progress` displays progress

information.

 Required? false

 Position? named

 Default value False

 Accept pipeline input? False

 Accept wildcard characters? false

 -CurrentOperation <System.String>

 Specifies the line of text below the progress bar. This text describes the operation that's currently taking place.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -Id <System.Int32>

 Specifies an ID that distinguishes each progress bar from the others. Use this parameter when you are creating more

than one progress bar in a single command. If Page 2/9

 the progress bars don't have different IDs, they're superimposed instead of being displayed in a series. Negative

values aren't allowed.

 Required? false

 Position? 2

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -ParentId <System.Int32>

 Specifies the parent activity of the current activity. Use the value `-1` if the current activity has no parent activity.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -PercentComplete <System.Int32>

 Specifies the percentage of the activity that's completed. Use the value `-1` if the percentage complete is unknown or

not applicable.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -SecondsRemaining <System.Int32>

 Specifies the projected number of seconds remaining until the activity is completed. Use the value `-1` if the number of

seconds remaining is unknown or not

 applicable.

 Page 3/9

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -SourceId <System.Int32>

 Specifies the source of the record. You can use this in place of Id but can't be used with other parameters like ParentId

.

 Required? false

 Position? named

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 -Status <System.String>

 Specifies the second line of text in the heading above the status bar. This text describes current state of the activity.

 Required? false

 Position? 1

 Default value None

 Accept pipeline input? False

 Accept wildcard characters? false

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer, PipelineVariable, and OutVariable. For more information, see

 about_CommonParameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

INPUTS

 None Page 4/9

 You can't pipe objects to this cmdlet.

OUTPUTS

 None

 This cmdlet returns no output.

NOTES

 If the progress bar doesn't appear, check the value of the `$ProgressPreference` variable. If the value is set to

`SilentlyContinue`, the progress bar isn't

 displayed. For more information about PowerShell preferences, see about_Preference_Variables

(../Microsoft.PowerShell.Core/About/about_Preference_Variables.md).

 The parameters of the cmdlet correspond to the properties of the System.Management.Automation.ProgressRecord

class. For more information, see ProgressRecord Class

 (/dotnet/api/system.management.automation.progressrecord).

 -------- Example 1: Display the progress of a For loop --------

 for ($i = 1; $i -le 100; $i++) {

 Write-Progress -Activity "Search in Progress" -Status "$i% Complete:" -PercentComplete $i

 Start-Sleep -Milliseconds 250

 }

 This command displays the progress of a `for` loop that counts from 1 to 100.

 The `Write-Progress` cmdlet includes a status bar heading `Activity`, a status line, and the variable `$i` (the counter in the

`for` loop), which indicates the

 relative completeness of the task.

 ----- Example 2: Display the progress of nested For loops ----- Page 5/9

 for($I = 0; $I -lt 10; $I++) {

 $OuterLoopProgressParameters = @{

 Activity = 'Updating'

 Status = 'Progress->'

 PercentComplete = $I * 10

 CurrentOperation = 'OuterLoop'

 }

 Write-Progress @OuterLoopProgressParameters

 for($j = 1; $j -lt 101; $j++) {

 $InnerLoopProgressParameters = @{

 ID = 1

 Activity = 'Updating'

 Status = 'Progress'

 PercentComplete = $j

 CurrentOperation = 'InnerLoop'

 }

 Write-Progress @InnerLoopProgressParameters

 Start-Sleep -Milliseconds 25

 }

 }

 Updating

 Progress ->

 [ooo]

 OuterLoop

 Updating

 Progress

 [oooooooooooooooooo]

 InnerLoop

 This example displays the progress of two nested For loops, each of which is represented by a progress bar.

 Page 6/9

 The `Write-Progress` command for the second progress bar includes the Id parameter that distinguishes it from the first

progress bar.

 Without the Id parameter, the progress bars would be superimposed on each other instead of being displayed one below

the other.

 - Example 3: Display the progress while searching for a string -

 # Use Get-EventLog to get the events in the System log and store them in the $Events variable.

 $Events = Get-EventLog -LogName system

 # Pipe the events to the ForEach-Object cmdlet.

 $Events | ForEach-Object -Begin {

 # In the Begin block, use Clear-Host to clear the screen.

 Clear-Host

 # Set the $i counter variable to zero.

 $i = 0

 # Set the $out variable to an empty string.

 $out = ""

 } -Process {

 # In the Process script block search the message property of each incoming object for "bios".

 if($_.message -like "*bios*")

 {

 # Append the matching message to the out variable.

 $out=$out + $_.Message

 }

 # Increment the $i counter variable which is used to create the progress bar.

 $i = $i+1

 # Determine the completion percentage

 $Completed = ($i/$Events.count) * 100

 # Use Write-Progress to output a progress bar.

 # The Activity and Status parameters create the first and second lines of the progress bar

 # heading, respectively.

 Write-Progress -Activity "Searching Events" -Status "Progress:" -PercentComplete $Completed

 } -End { Page 7/9

 # Display the matching messages using the out variable.

 $out

 }

 This command displays the progress of a command to find the string "bios" in the System event log.

 The PercentComplete parameter value is calculated by dividing the number of events that have been processed `$i` by

the total number of events retrieved

 `$Events.count` and then multiplying that result by 100.

 Example 4: Display progress for each level of a nested process

 foreach ($i in 1..10) {

 Write-Progress -Id 0 "Step $i"

 foreach ($j in 1..10) {

 Write-Progress -Id 1 -ParentId 0 "Step $i - Substep $j"

 foreach ($k in 1..10) {

 Write-Progress -Id 2 -ParentId 1 "Step $i - Substep $j - iteration $k"

 Start-Sleep -Milliseconds 150

 }

 }

 }

 Step 1

 Processing

 Step 1 - Substep 2

 Processing

 Step 1 - Substep 2 - Iteration 3

 Processing

 In this example you can use the ParentId parameter to have indented output to show parent-child relationships in the

progress of each step.

RELATED LINKS Page 8/9

 Online Version:

https://learn.microsoft.com/powershell/module/microsoft.powershell.utility/write-progress?view=powershell-5.1&WT.mc_id=p

s-gethelp

 Write-Debug

 Write-Error

 Write-Host

 Write-Output

 Write-Progress

 Write-Verbose

 Write-Warning

Page 9/9

