
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'STAILQ_FOREACH.3' command

$ man STAILQ_FOREACH.3

STAILQ(3) Linux Programmer's Manual STAILQ(3)

NAME

 STAILQ_CONCAT, STAILQ_EMPTY, STAILQ_ENTRY, STAILQ_FIRST, STAILQ_FORE?

 ACH, STAILQ_HEAD, STAILQ_HEAD_INITIALIZER, STAILQ_INIT, STAILQ_IN?

 SERT_AFTER, STAILQ_INSERT_HEAD, STAILQ_INSERT_TAIL, STAILQ_NEXT,

 STAILQ_REMOVE, STAILQ_REMOVE_HEAD, - implementation of a singly linked

 tail queue

SYNOPSIS

 #include <sys/queue.h>

 void STAILQ_CONCAT(STAILQ_HEAD *head1, STAILQ_HEAD *head2);

 int STAILQ_EMPTY(STAILQ_HEAD *head);

 STAILQ_ENTRY(TYPE);

 struct TYPE *STAILQ_FIRST(STAILQ_HEAD *head);

 STAILQ_FOREACH(struct TYPE *var, STAILQ_HEAD *head, STAILQ_ENTRY NAME);

 STAILQ_HEAD(HEADNAME, TYPE);

 STAILQ_HEAD STAILQ_HEAD_INITIALIZER(STAILQ_HEAD head);

 void STAILQ_INIT(STAILQ_HEAD *head);

 void STAILQ_INSERT_AFTER(STAILQ_HEAD *head, struct TYPE *listelm,

 struct TYPE *elm, STAILQ_ENTRY NAME);

 void STAILQ_INSERT_HEAD(STAILQ_HEAD *head, struct TYPE *elm,

 STAILQ_ENTRY NAME);

 void STAILQ_INSERT_TAIL(STAILQ_HEAD *head, struct TYPE *elm,

 STAILQ_ENTRY NAME); Page 1/5

 struct TYPE *STAILQ_NEXT(struct TYPE *elm, STAILQ_ENTRY NAME);

 void STAILQ_REMOVE(STAILQ_HEAD *head, struct TYPE *elm, TYPE,

 STAILQ_ENTRY NAME);

 void STAILQ_REMOVE_HEAD(STAILQ_HEAD *head, STAILQ_ENTRY NAME);

DESCRIPTION

 These macros define and operate on singly linked tail queues.

 In the macro definitions, TYPE is the name of a user-defined structure,

 that must contain a field of type STAILQ_ENTRY, named NAME. The argu?

 ment HEADNAME is the name of a user-defined structure that must be de?

 clared using the macro STAILQ_HEAD().

 A singly linked tail queue is headed by a structure defined by the

 STAILQ_HEAD() macro. This structure contains a pair of pointers, one

 to the first element in the tail queue and the other to the last ele?

 ment in the tail queue. The elements are singly linked for minimum

 space and pointer manipulation overhead at the expense of O(n) removal

 for arbitrary elements. New elements can be added to the tail queue

 after an existing element, at the head of the tail queue, or at the end

 of the tail queue. A STAILQ_HEAD structure is declared as follows:

 STAILQ_HEAD(HEADNAME, TYPE) head;

 where struct HEADNAME is the structure to be defined, and struct TYPE

 is the type of the elements to be linked into the tail queue. A

 pointer to the head of the tail queue can later be declared as:

 struct HEADNAME *headp;

 (The names head and headp are user selectable.)

 The macro STAILQ_HEAD_INITIALIZER() evaluates to an initializer for the

 tail queue head.

 The macro STAILQ_CONCAT() concatenates the tail queue headed by head2

 onto the end of the one headed by head1 removing all entries from the

 former.

 The macro STAILQ_EMPTY() evaluates to true if there are no items on the

 tail queue.

 The macro STAILQ_ENTRY() declares a structure that connects the ele?

 ments in the tail queue. Page 2/5

 The macro STAILQ_FIRST() returns the first item on the tail queue or

 NULL if the tail queue is empty.

 The macro STAILQ_FOREACH() traverses the tail queue referenced by head

 in the forward direction, assigning each element in turn to var.

 The macro STAILQ_INIT() initializes the tail queue referenced by head.

 The macro STAILQ_INSERT_HEAD() inserts the new element elm at the head

 of the tail queue.

 The macro STAILQ_INSERT_TAIL() inserts the new element elm at the end

 of the tail queue.

 The macro STAILQ_INSERT_AFTER() inserts the new element elm after the

 element listelm.

 The macro STAILQ_NEXT() returns the next item on the tail queue, or

 NULL this item is the last.

 The macro STAILQ_REMOVE_HEAD() removes the element at the head of the

 tail queue. For optimum efficiency, elements being removed from the

 head of the tail queue should use this macro explicitly rather than the

 generic STAILQ_REMOVE() macro.

 The macro STAILQ_REMOVE() removes the element elm from the tail queue.

RETURN VALUE

 STAILQ_EMPTY() returns nonzero if the queue is empty, and zero if the

 queue contains at least one entry.

 STAILQ_FIRST(), and STAILQ_NEXT() return a pointer to the first or next

 TYPE structure, respectively.

 STAILQ_HEAD_INITIALIZER() returns an initializer that can be assigned

 to the queue head.

CONFORMING TO

 Not in POSIX.1, POSIX.1-2001 or POSIX.1-2008. Present on the BSDs

 (STAILQ macros first appeared in 4.4BSD).

BUGS

 The macro STAILQ_FOREACH() doesn't allow var to be removed or freed

 within the loop, as it would interfere with the traversal. The macro

 STAILQ_FOREACH_SAFE(), which is present on the BSDs but is not present

 in glibc, fixes this limitation by allowing var to safely be removed Page 3/5

 from the list and freed from within the loop without interfering with

 the traversal.

EXAMPLES

 #include <stddef.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <sys/queue.h>

 struct entry {

 int data;

 STAILQ_ENTRY(entry) entries; /* Singly linked tail queue. */

 };

 STAILQ_HEAD(stailhead, entry);

 int

 main(void)

 {

 struct entry *n1, *n2, *n3, *np;

 struct stailhead head; /* Singly linked tail queue

 head. */

 STAILQ_INIT(&head); /* Initialize the queue. */

 n1 = malloc(sizeof(struct entry)); /* Insert at the head. */

 STAILQ_INSERT_HEAD(&head, n1, entries);

 n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */

 STAILQ_INSERT_TAIL(&head, n1, entries);

 n2 = malloc(sizeof(struct entry)); /* Insert after. */

 STAILQ_INSERT_AFTER(&head, n1, n2, entries);

 STAILQ_REMOVE(&head, n2, entry, entries);/* Deletion. */

 free(n2);

 n3 = STAILQ_FIRST(&head);

 STAILQ_REMOVE_HEAD(&head, entries); /* Deletion from the head. */

 free(n3);

 n1 = STAILQ_FIRST(&head);

 n1->data = 0;

 for (int i = 1; i < 5; i++) { Page 4/5

 n1 = malloc(sizeof(struct entry));

 STAILQ_INSERT_HEAD(&head, n1, entries);

 n1->data = i;

 }

 /* Forward traversal. */

 STAILQ_FOREACH(np, &head, entries)

 printf("%i\n", np->data);

 /* TailQ Deletion. */

 n1 = STAILQ_FIRST(&head);

 while (n1 != NULL) {

 n2 = STAILQ_NEXT(n1, entries);

 free(n1);

 n1 = n2;

 }

 STAILQ_INIT(&head);

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 insque(3), queue(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

GNU 2020-10-21 STAILQ(3)

Page 5/5

