
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'acl.5' command

$ man acl.5

ACL(5) BSD File Formats Manual ACL(5)

NAME

 acl ? Access Control Lists

DESCRIPTION

 This manual page describes POSIX Access Control Lists, which are used to

 define more fine-grained discretionary access rights for files and direc?

 tories.

ACL TYPES

 Every object can be thought of as having associated with it an ACL that

 governs the discretionary access to that object; this ACL is referred to

 as an access ACL. In addition, a directory may have an associated ACL

 that governs the initial access ACL for objects created within that di?

 rectory; this ACL is referred to as a default ACL.

ACL ENTRIES

 An ACL consists of a set of ACL entries. An ACL entry specifies the ac?

 cess permissions on the associated object for an individual user or a

 group of users as a combination of read, write and search/execute permis?

 sions.

 An ACL entry contains an entry tag type, an optional entry tag qualifier,

 and a set of permissions. We use the term qualifier to denote the entry

 tag qualifier of an ACL entry.

 The qualifier denotes the identifier of a user or a group, for entries

 with tag types of ACL_USER or ACL_GROUP, respectively. Entries with tag Page 1/9

 types other than ACL_USER or ACL_GROUP have no defined qualifiers.

 The following entry tag types are defined:

 ACL_USER_OBJ The ACL_USER_OBJ entry denotes access rights for

 the file owner.

 ACL_USER ACL_USER entries denote access rights for users

 identified by the entry's qualifier.

 ACL_GROUP_OBJ The ACL_GROUP_OBJ entry denotes access rights for

 the file group.

 ACL_GROUP ACL_GROUP entries denote access rights for groups

 identified by the entry's qualifier.

 ACL_MASK The ACL_MASK entry denotes the maximum access

 rights that can be granted by entries of type

 ACL_USER, ACL_GROUP_OBJ, or ACL_GROUP.

 ACL_OTHER The ACL_OTHER entry denotes access rights for pro?

 cesses that do not match any other entry in the

 ACL.

 When an access check is performed, the ACL_USER_OBJ and ACL_USER entries

 are tested against the effective user ID. The effective group ID, as well

 as all supplementary group IDs are tested against the ACL_GROUP_OBJ and

 ACL_GROUP entries.

VALID ACLs

 A valid ACL contains exactly one entry with each of the ACL_USER_OBJ,

 ACL_GROUP_OBJ, and ACL_OTHER tag types. Entries with ACL_USER and

 ACL_GROUP tag types may appear zero or more times in an ACL. An ACL that

 contains entries of ACL_USER or ACL_GROUP tag types must contain exactly

 one entry of the ACL_MASK tag type. If an ACL contains no entries of

 ACL_USER or ACL_GROUP tag types, the ACL_MASK entry is optional.

 All user ID qualifiers must be unique among all entries of ACL_USER tag

 type, and all group IDs must be unique among all entries of ACL_GROUP tag

 type.

 The acl_get_file() function returns an ACL with zero ACL entries as the

 default ACL of a directory, if the directory is not associated with a de?

 fault ACL. The acl_set_file() function also accepts an ACL with zero ACL Page 2/9

 entries as a valid default ACL for directories, denoting that the direc?

 tory shall not be associated with a default ACL. This is equivalent to

 using the acl_delete_def_file() function.

CORRESPONDENCE BETWEEN ACL ENTRIES AND FILE PERMISSION BITS

 The permissions defined by ACLs are a superset of the permissions speci?

 fied by the file permission bits.

 There is a correspondence between the file owner, group, and other per?

 missions and specific ACL entries: the owner permissions correspond to

 the permissions of the ACL_USER_OBJ entry. If the ACL has an ACL_MASK en?

 try, the group permissions correspond to the permissions of the ACL_MASK

 entry. Otherwise, if the ACL has no ACL_MASK entry, the group permis?

 sions correspond to the permissions of the ACL_GROUP_OBJ entry. The

 other permissions correspond to the permissions of the ACL_OTHER_OBJ en?

 try.

 The file owner, group, and other permissions always match the permissions

 of the corresponding ACL entry. Modification of the file permission bits

 results in the modification of the associated ACL entries, and modifica?

 tion of these ACL entries results in the modification of the file permis?

 sion bits.

OBJECT CREATION AND DEFAULT ACLs

 The access ACL of a file object is initialized when the object is created

 with any of the creat(), mkdir(), mknod(), mkfifo(), or open() functions.

 If a default ACL is associated with a directory, the mode parameter to

 the functions creating file objects and the default ACL of the directory

 are used to determine the ACL of the new object:

 1. The new object inherits the default ACL of the containing directory

 as its access ACL.

 2. The access ACL entries corresponding to the file permission bits are

 modified so that they contain no permissions that are not contained

 in the permissions specified by the mode parameter.

 If no default ACL is associated with a directory, the mode parameter to

 the functions creating file objects and the file creation mask (see

 umask(2)) are used to determine the ACL of the new object: Page 3/9

 1. The new object is assigned an access ACL containing entries of tag

 types ACL_USER_OBJ, ACL_GROUP_OBJ, and ACL_OTHER. The permissions of

 these entries are set to the permissions specified by the file cre?

 ation mask.

 2. The access ACL entries corresponding to the file permission bits are

 modified so that they contain no permissions that are not contained

 in the permissions specified by the mode parameter.

ACCESS CHECK ALGORITHM

 A process may request read, write, or execute/search access to a file ob?

 ject protected by an ACL. The access check algorithm determines whether

 access to the object will be granted.

 1. If the effective user ID of the process matches the user ID of the

 file object owner, then

 if the ACL_USER_OBJ entry contains the requested permissions,

 access is granted,

 else access is denied.

 2. else if the effective user ID of the process matches the qualifier

 of any entry of type ACL_USER, then

 if the matching ACL_USER entry and the ACL_MASK entry contain

 the requested permissions, access is granted,

 else access is denied.

 3. else if the effective group ID or any of the supplementary group IDs

 of the process match the file group or the qualifier of any entry of

 type ACL_GROUP, then

 if the ACL contains an ACL_MASK entry, then

 if the ACL_MASK entry and any of the matching

 ACL_GROUP_OBJ or ACL_GROUP entries contain the requested

 permissions, access is granted,

 else access is denied.

 else (note that there can be no ACL_GROUP entries without an

 ACL_MASK entry)

 if the ACL_GROUP_OBJ entry contains the requested per?

 missions, access is granted, Page 4/9

 else access is denied.

 4. else if the ACL_OTHER entry contains the requested permissions, ac?

 cess is granted.

 5. else access is denied.

ACL TEXT FORMS

 A long and a short text form for representing ACLs is defined. In both

 forms, ACL entries are represented as three colon separated fields: an

 ACL entry tag type, an ACL entry qualifier, and the discretionary access

 permissions. The first field contains one of the following entry tag type

 keywords:

 user A user ACL entry specifies the access granted to either the

 file owner (entry tag type ACL_USER_OBJ) or a specified

 user (entry tag type ACL_USER).

 group A group ACL entry specifies the access granted to either

 the file group (entry tag type ACL_GROUP_OBJ) or a speci?

 fied group (entry tag type ACL_GROUP).

 mask A mask ACL entry specifies the maximum access which can be

 granted by any ACL entry except the user entry for the file

 owner and the other entry (entry tag type ACL_MASK).

 other An other ACL entry specifies the access granted to any

 process that does not match any user or group ACL entries

 (entry tag type ACL_OTHER).

 The second field contains the user or group identifier of the user or

 group associated with the ACL entry for entries of entry tag type

 ACL_USER or ACL_GROUP, and is empty for all other entries. A user identi?

 fier can be a user name or a user ID number in decimal form. A group

 identifier can be a group name or a group ID number in decimal form.

 The third field contains the discretionary access permissions. The read,

 write and search/execute permissions are represented by the r, w, and x

 characters, in this order. Each of these characters is replaced by the -

 character to denote that a permission is absent in the ACL entry. When

 converting from the text form to the internal representation, permissions

 that are absent need not be specified. Page 5/9

 White space is permitted at the beginning and end of each ACL entry, and

 immediately before and after a field separator (the colon character).

 LONG TEXT FORM

 The long text form contains one ACL entry per line. In addition, a number

 sign (#) may start a comment that extends until the end of the line. If

 an ACL_USER, ACL_GROUP_OBJ or ACL_GROUP ACL entry contains permissions

 that are not also contained in the ACL_MASK entry, the entry is followed

 by a number sign, the string ?effective:?, and the effective access per?

 missions defined by that entry. This is an example of the long text form:

 user::rw-

 user:lisa:rw- #effective:r--

 group::r--

 group:toolies:rw- #effective:r--

 mask::r--

 other::r--

 SHORT TEXT FORM

 The short text form is a sequence of ACL entries separated by commas, and

 is used for input. Comments are not supported. Entry tag type keywords

 may either appear in their full unabbreviated form, or in their single

 letter abbreviated form. The abbreviation for user is u, the abbreviation

 for group is g, the abbreviation for mask is m, and the abbreviation for

 other is o. The permissions may contain at most one each of the follow?

 ing characters in any order: r, w, x. These are examples of the short

 text form:

 u::rw-,u:lisa:rw-,g::r--,g:toolies:rw-,m::r--,o::r--

 g:toolies:rw,u:lisa:rw,u::wr,g::r,o::r,m::r

RATIONALE

 IEEE 1003.1e draft 17 defines Access Control Lists that include entries

 of tag type ACL_MASK, and defines a mapping between file permission bits

 that is not constant. The standard working group defined this relatively

 complex interface in order to ensure that applications that are compliant

 with IEEE 1003.1 (?POSIX.1?) will still function as expected on systems

 with ACLs. The IEEE 1003.1e draft 17 contains the rationale for choosing Page 6/9

 this interface in section B.23.

CHANGES TO THE FILE UTILITIES

 On a system that supports ACLs, the file utilities ls(1), cp(1), and

 mv(1) change their behavior in the following way:

 ? For files that have a default ACL or an access ACL that contains more

 than the three required ACL entries, the ls(1) utility in the long

 form produced by ls -l displays a plus sign (+) after the permission

 string.

 ? If the -p flag is specified, the cp(1) utility also preserves ACLs.

 If this is not possible, a warning is produced.

 ? The mv(1) utility always preserves ACLs. If this is not possible, a

 warning is produced.

 The effect of the chmod(1) utility, and of the chmod(2) system call, on

 the access ACL is described in CORRESPONDENCE BETWEEN ACL ENTRIES AND

 FILE PERMISSION BITS.

STANDARDS

 The IEEE 1003.1e draft 17 (?POSIX.1e?) document describes several secu?

 rity extensions to the IEEE 1003.1 standard. While the work on 1003.1e

 has been abandoned, many UNIX style systems implement parts of POSIX.1e

 draft 17, or of earlier drafts.

 Linux Access Control Lists implement the full set of functions and utili?

 ties defined for Access Control Lists in POSIX.1e, and several exten?

 sions. The implementation is fully compliant with POSIX.1e draft 17; ex?

 tensions are marked as such. The Access Control List manipulation func?

 tions are defined in the ACL library (libacl, -lacl). The POSIX compliant

 interfaces are declared in the <sys/acl.h> header. Linux-specific exten?

 sions to these functions are declared in the <acl/libacl.h> header.

SEE ALSO

 chmod(1), creat(2), getfacl(1), ls(1), mkdir(2), mkfifo(2), mknod(2),

 open(2), setfacl(1), stat(2), umask(1)

 POSIX 1003.1e DRAFT 17

 http://wt.tuxomania.net/publications/posix.1e/download.html

 POSIX 1003.1e FUNCTIONS BY CATEGORY Page 7/9

 ACL storage management

 acl_dup(3), acl_free(3), acl_init(3)

 ACL entry manipulation

 acl_copy_entry(3), acl_create_entry(3), acl_delete_entry(3),

 acl_get_entry(3), acl_valid(3)

 acl_add_perm(3), acl_calc_mask(3), acl_clear_perms(3),

 acl_delete_perm(3), acl_get_permset(3), acl_set_permset(3)

 acl_get_qualifier(3), acl_get_tag_type(3), acl_set_qualifier(3),

 acl_set_tag_type(3)

 ACL manipulation on an object

 acl_delete_def_file(3), acl_get_fd(3), acl_get_file(3),

 acl_set_fd(3), acl_set_file(3)

 ACL format translation

 acl_copy_entry(3), acl_copy_ext(3), acl_from_text(3),

 acl_to_text(3), acl_size(3)

 POSIX 1003.1e FUNCTIONS BY AVAILABILITY

 The first group of functions is supported on most systems with POSIX-like

 access control lists, while the second group is supported on fewer sys?

 tems. For applications that will be ported the second group is best

 avoided.

 acl_delete_def_file(3), acl_dup(3), acl_free(3), acl_from_text(3),

 acl_get_fd(3), acl_get_file(3), acl_init(3), acl_set_fd(3),

 acl_set_file(3), acl_to_text(3), acl_valid(3)

 acl_add_perm(3), acl_calc_mask(3), acl_clear_perms(3), acl_copy_entry(3),

 acl_copy_ext(3), acl_copy_int(3), acl_create_entry(3),

 acl_delete_entry(3), acl_delete_perm(3), acl_get_entry(3),

 acl_get_permset(3), acl_get_qualifier(3), acl_get_tag_type(3),

 acl_set_permset(3), acl_set_qualifier(3), acl_set_tag_type(3),

 acl_size(3)

 LINUX EXTENSIONS

 These non-portable extensions are available on Linux systems.

 acl_check(3), acl_cmp(3), acl_entries(3), acl_equiv_mode(3),

 acl_error(3), acl_extended_fd(3), acl_extended_file(3), Page 8/9

 acl_extended_file_nofollow(3), acl_from_mode(3), acl_get_perm(3),

 acl_to_any_text(3)

AUTHOR

 Andreas Gruenbacher, <andreas.gruenbacher@gmail.com>

Linux ACL March 23, 2002 Linux ACL

Page 9/9

