r*‘ ,

University

FPDF Library

RedHat
Enterprise Linux

PDF generator
i,

g

Manual Pages

Full credit is given to the above companies including the 0S
that this PDF file was generated!

Red Hat Enterprise Linux Release 9.2 Manual Pages on 'audit2allow.1' command

$ man audit2allow.1

AUDIT2ALLOW(1) NSA AUDIT2ALLOW(1)
NAME
audit2allow - generate SELinux policy allow/dontaudit rules from logs
of denied operations
audit2why - translates SELinux audit messages into a description of why
the access was denied (audit2allow -w)
SYNOPSIS
audit2allow [options]
OPTIONS
-a | --all
Read input from audit and message log, conflicts with -i
-b | --boot
Read input from audit messages since last boot conflicts with -i
-d | --dmesg
Read input from output of /bin/dmesg. Note that all audit mes?
sages are not available via dmesg when auditd is running; use
"ausearch -m avc | audit2allow" or "-a" instead.
-D | --dontaudit
Generate dontaudit rules (Default: allow)
-h | --help
Print a short usage message
-i <inputfile> | --input <inputfile>

read input from <inputfile> Page 1/5

- | --lastreload
read input only after last policy reload
-m <modulename> | --module <modulename>
Generate module/require output <modulename>
-M <modulename>
Generate loadable module package, conflicts with -0
-p <policyfile> | --policy <policyfile>
Policy file to use for analysis
-0 <outputfile> | --output <outputfile>
append output to <outputfile>
-r | --requires
Generate require output syntax for loadable modules.
-N | --noreference
Do not generate reference policy, traditional style allow rules.
This is the default behavior.
-R | --reference
Generate reference policy using installed macros. This attempts
to match denials against interfaces and may be inaccurate.
-X | --xperms
Generate extended permission access vector rules
-w | --why
Translates SELinux audit messages into a description of why the
access was denied
-v | --verbose
Turn on verbose output
DESCRIPTION
This utility scans the logs for messages logged when the system denied
permission for operations, and generates a snippet of policy rules
which, if loaded into policy, might have allowed those operations to
succeed. However, this utility only generates Type Enforcement (TE) al?
low rules. Certain permission denials may require other kinds of pol?
icy changes, e.g. adding an attribute to a type declaration to satisfy

an existing constraint, adding a role allow rule, or modifying a con? Page 2/5

straint. The audit2why(8) utility may be used to diagnose the reason
when it is unclear.
Care must be exercised while acting on the output of this utility to
ensure that the operations being permitted do not pose a security
threat. Often it is better to define new domains and/or types, or make
other structural changes to narrowly allow an optimal set of operations
to succeed, as opposed to blindly implementing the sometimes broad
changes recommended by this utility. Certain permission denials are
not fatal to the application, in which case it may be preferable to
simply suppress logging of the denial via a 'dontaudit’ rule rather
than an 'allow' rule.
EXAMPLE

NOTE: These examples are for systems using the audit package. If you do
not use the audit package, the AVC messages will be in /var/log/messages.
Please substitute /var/log/messages for /var/log/audit/audit.log in the
examples.
Using audit2allow to generate module policy
$ cat /var/log/audit/audit.log | audit2allow -m local > local.te
$ cat local.te
module local 1.0;
require {

class file { getattr open read };

type myapp_t;

type etc_t;
h
allow myapp_t etc_t:file { getattr open read };
<review local.te and customize as desired>
Using audit2allow to generate module policy using reference policy
$ cat /var/log/audit/audit.log | audit2allow -R -m local > local.te
$ cat local.te
policy _module(local, 1.0)
gen_require(’

type myapp_t; Page 3/5

type etc_t;
)
files_read_etc_files(myapp_t)
<review local.te and customize as desired>
Building module policy using Makefile
SELinux provides a policy devel environment under
lusr/share/selinux/devel including all of the shipped
interface files.
You can create a te file and compile it by executing
$ make -f /usr/share/selinux/devel/Makefile local.pp
This make command will compile a local.te file in the current
directory. If you did not specify a "pp" file, the make file
will compile all "te" files in the current directory. After
you compile your te file into a "pp" file, you need to install
it using the semodule command.
$ semodule -i local.pp
Building module policy manually
Compile the module
$ checkmodule -M -m -o local.mod local.te
Create the package
$ semodule_package -o local.pp -m local.mod
Load the module into the kernel
$ semodule -i local.pp
Using audit2allow to generate and build module policy
$ cat /var/log/audit/audit.log | audit2allow -M local
Generating type enforcement file: local.te
Compiling policy: checkmodule -M -m -o local.mod local.te

Building package: semodule_package -o local.pp -m local.mod

ke IMPORTANT itttk
In order to load this newly created policy package into the kernel,
you are required to execute
semodule -i local.pp

Using audit2allow to generate monolithic (non-module) policy

Page 4/5

$ cd /etc/selinux/$SSELINUXTYPE/src/policy
$ cat /var/log/audit/audit.log | audit2allow >> domains/misc/local.te
$ cat domains/misc/local.te
allow cupsd_config_t unconfined_t:fifo_file { getattr ioctl };
<review domains/misc/local.te and customize as desired>
$ make load
AUTHOR
This manual page was written by Manoj Srivastava <srivasta@debian.org>,
for the Debian GNU/Linux system. It was updated by Dan Walsh
<dwalsh@redhat.com>
The audit2allow utility has contributions from several people, includ?
ing Justin R. Smith and Yuichi Nakamura. and Dan Walsh

Security Enhanced Linux October 2010 AUDIT2ALLOW(1)

Page 5/5

