r*‘ ,

University

FPDF Library

RedHat PR ot
Enterprise Linux

Manual Pages

A

g

Full credit is given to the above companies including the 0S
that this PDF file was generated!

Red Hat Enterprise Linux Release 9.2 Manual Pages on 'bpftool-prog.8' command
$ man bpftool-prog.8
BPFTOOL-PROG(8) BPFTOOL-PROG(8)
NAME
bpftool-prog - tool for inspection and simple manipulation of eBPF
progs
SYNOPSIS
bpftool [OPTIONS] prog COMMAND
OPTIONS :={{-j|-json}[{-p | --pretty }] | { -d | --debug }
| {-I'l--legacy } | { -f| --bpffs } | { -m | --mapcompat } | { -n
| --nomount } | { -L | --use-loader } }
COMMANDS :={ show | list | dump xlated | dump jited | pin | load |
loadall | help }
PROG COMMANDS
bpftool prog { show | list } [PROG]
bpftool prog dump xlated PROG [{file FILE | opcodes | visual | linum}]
bpftool prog dump jited PROG [{file FILE | opcodes | linum}]
bpftool prog pin PROG FILE
bpftool prog { load | loadall } OBJ PATH [type TYPE] [map {idx IDX | name NAME} MAP] [dev NAME] [pinmaps
MAP_DIR]
bpftool prog attach PROG ATTACH_TYPE [MAP]
bpftool prog detach PROG ATTACH_TYPE [MAP]
bpftool prog tracelog
bpftool prog run PROG data_in FILE [data_out FILE [data_size out L]] [ctx_in FILE [ctx_out FILE [ctx_size_out M]]]

[repeat N] Page 1/10

bpftool prog profile PROG [duration DURATION] METRICs
bpftool prog help
MAP := { id MAP_ID | pinned FILE }
PROG :={id PROG_ID | pinned FILE | tag PROG_TAG | name PROG_NAME }
TYPE :={
socket | kprobe | kretprobe | classifier | action |
tracepoint | raw_tracepoint | xdp | perf_event | cgroup/skb |
cgroup/sock | cgroup/dev | Iwt_in | Iwt_out | lwt_xmit |
Iwt_seg6local | sockops | sk_skb | sk_msg | lirc_mode2 |
cgroup/bind4 | cgroup/bind6 | cgroup/post_bind4 | cgroup/post_bind6 |
cgroup/connect4 | cgroup/connect6 | cgroup/getpeername4 | cgroup/getpeernames |
cgroup/getsockname4 | cgroup/getsockname6 | cgroup/sendmsg4 | cgroup/sendmsge |
cgroup/recvmsg4 | cgroup/recvmsg6 | cgroup/sysctl |
cgroup/getsockopt | cgroup/setsockopt | cgroup/sock_release |
struct_ops | fentry | fexit | freplace | sk_lookup
}
ATTACH_TYPE = {
sk_msg_verdict | sk_skb_verdict | sk_skb_stream_verdict |
sk_skb_stream_parser | flow_dissector
}
METRICs := {
cycles | instructions | I11d_loads | llc_misses |
itlh_misses | dtlb_misses
}
DESCRIPTION
bpftool prog { show | list } [PROG]
Show information about loaded programs. If PROG is specified
show information only about given programs, otherwise list
all programs currently loaded on the system. In case of tag
or name, PROG may match several programs which will all be
shown.
Output will start with program ID followed by program type

and zero or more named attributes (depending on kernel ver? Page 2/10

sion).
Since Linux 5.1 the kernel can collect statistics on BPF pro?
grams (such as the total time spent running the program, and
the number of times it was run). If available, bpftool shows
such statistics. However, the kernel does not collect them by
defaults, as it slightly impacts performance on each program
run. Activation or deactivation of the feature is performed
via the kernel.bpf_stats_enabled sysctl knob.
Since Linux 5.8 bpftool is able to discover information about
processes that hold open file descriptors (FDs) against BPF
programs. On such kernels bpftool will automatically emit
this information as well.

bpftool prog dump xlated PROG [{ file FILE | opcodes | visual |

linum }]
Dump eBPF instructions of the programs from the kernel. By
default, eBPF will be disassembled and printed to standard
output in human-readable format. In this case, opcodes con?
trols if raw opcodes should be printed as well.
In case of tag or name, PROG may match several programs which
will all be dumped. However, if file or visual is specified,
PROG must match a single program.
If file is specified, the binary image will instead be writ?
ten to FILE.
If visual is specified, control flow graph (CFG) will be
built instead, and eBPF instructions will be presented with
CFG in DOT format, on standard output.
If the programs have line_info available, the source line
will be displayed by default. If linum is specified, the
filename, line number and line column will also be displayed
on top of the source line.

bpftool prog dump jited PROG [{ file FILE | opcodes | linum }]
Dump jited image (host machine code) of the program.

If FILE is specified image will be written to a file, other? Page 3/10

wise it will be disassembled and printed to stdout. PROG
must match a single program when file is specified.
opcodes controls if raw opcodes will be printed.
If the prog has line_info available, the source line will be
displayed by default. If linum is specified, the filename,
line number and line column will also be displayed on top of
the source line.

bpftool prog pin PROG FILE
Pin program PROG as FILE.
Note: FILE must be located in bpffs mount. It must not con?
tain a dot character ('."), which is reserved for future ex?
tensions of bpffs.

bpftool prog { load | loadall } OBJ PATH [type TYPE] [map {idx IDX |

name NAME} MAP] [dev NAME] [pinmaps MAP_DIR]
Load bpf program(s) from binary OBJ and pin as PATH. bpftool
prog load pins only the first program from the OBJ as PATH.
bpftool prog loadall pins all programs from the OBJ under
PATH directory. type is optional, if not specified program
type will be inferred from section names. By default bpftool
will create new maps as declared in the ELF object being
loaded. map parameter allows for the reuse of existing maps.
It can be specified multiple times, each time for a different
map. IDX refers to index of the map to be replaced in the
ELF file counting from 0, while NAME allows to replace a map
by name. MAP specifies the map to use, referring to it by id
or through a pinned file. If dev NAME is specified program
will be loaded onto given networking device (offload). Op?
tional pinmaps argument can be provided to pin all maps under
MAP_DIR directory.
Note: PATH must be located in bpffs mount. It must not con?
tain a dot character ('."), which is reserved for future ex?
tensions of bpffs.

bpftool prog attach PROG ATTACH_TYPE [MAP] Page 4/10

Attach bpf program PROG (with type specified by ATTACH_TYPE).
Most ATTACH_TYPEs require a MAP parameter, with the exception
of flow_dissector which is attached to current networking
name space.
bpftool prog detach PROG ATTACH_TYPE [MAP]
Detach bpf program PROG (with type specified by ATTACH_TYPE).
Most ATTACH_TYPEs require a MAP parameter, with the exception
of flow_dissector which is detached from the current network?
ing name space.
bpftool prog tracelog
Dump the trace pipe of the system to the console (stdout).
Hit <Ctrl+C> to stop printing. BPF programs can write to this
trace pipe at runtime with the bpf_trace_printk() helper.
This should be used only for debugging purposes. For stream?
ing data from BPF programs to user space, one can use perf
events (see also bpftool-map(8)).
bpftool prog run PROG data_in FILE [data_out FILE [data_size out L]]
[ctx_in FILE [ctx_out FILE [ctx_size_out M]]] [repeat N]
Run BPF program PROG in the kernel testing infrastructure for
BPF, meaning that the program works on the data and context
provided by the user, and not on actual packets or monitored
functions etc. Return value and duration for the test run are
printed out to the console.
Input data is read from the FILE passed with data_in. If
this FILE is "-", input data is read from standard input. In?
put context, if any, is read from FILE passed with ctx_in.
Again, "-" can be used to read from standard input, but only
if standard input is not already in use for input data. If a
FILE is passed with data_out, output data is written to that
file. Similarly, output context is written to the FILE passed
with ctx_out. For both output flows, "-" can be used to print
to the standard output (as plain text, or JSON if relevant

option was passed). If output keywords are omitted, output Page 5/10

data and context are discarded. Keywords data_size out and
ctx_size_out are used to pass the size (in bytes) for the
output buffers to the kernel, although the default of 32 kB
should be more than enough for most cases.
Keyword repeat is used to indicate the number of consecutive
runs to perform. Note that output data and context printed to
files correspond to the last of those runs. The duration
printed out at the end of the runs is an average over all
runs performed by the command.
Not all program types support test run. Among those which do,
not all of them can take the ctx_in/ctx_out arguments.
bpftool does not perform checks on program types.

bpftool prog profile PROG [duration DURATION] METRICs
Profile METRICs for bpf program PROG for DURATION seconds or
until user hits <Ctrl+C>. DURATION is optional. If DURATION
is not specified, the profiling will run up to UINT_MAX sec?
onds.

bpftool prog help
Print short help message.

OPTIONS

-h, --help
Print short help message (similar to bpftool help).

-V, --version
Print bpftool's version number (similar to bpftool version),
the number of the libbpf version in use, and optional fea?
tures that were included when bpftool was compiled. Optional
features include linking against libbfd to provide the disas?
sembler for JIT-ted programs (bpftool prog dump jited) and
usage of BPF skeletons (some features like bpftool prog pro?
file or showing pids associated to BPF objects may rely on
it).

-j, --json

Generate JSON output. For commands that cannot produce JSON, Page 6/10

this option has no effect.

-p, --pretty
Generate human-readable JSON output. Implies -j.

-d, --debug
Print all logs available, even debug-level information. This
includes logs from libbpf as well as from the verifier, when
attempting to load programs.

-l, --legacy
Use legacy libbpf mode which has more relaxed BPF program re?
qguirements. By default, bpftool has more strict requirements
about section names, changes pinning logic and doesn't sup?
port some of the older non-BTF map declarations.
See
https://github.com/libbpf/libbpf/wiki/Libbpf:-the-road-to-v1.0
for details.

-f, --bpffs
When showing BPF programs, show file names of pinned pro?
grams.

-m, --mapcompat
Allow loading maps with unknown map definitions.

-n, --nomount
Do not automatically attempt to mount any virtual file system
(such as tracefs or BPF virtual file system) when necessary.

-L, --use-loader
Load program as a "loader" program. This is useful to debug
the generation of such programs. When this option is in use,
bpftool attempts to load the programs from the object file
into the kernel, but does not pin them (therefore, the PATH
must not be provided).
When combined with the -d|--debug option, additional debug
messages are generated, and the execution of the loader pro?
gram will use the bpf_trace_printk() helper to log each step

of loading BTF, creating the maps, and loading the programs Page 7/10

(see bpftool prog tracelog as a way to dump those messages).

EXAMPLES

bpftool prog show

10: xdp name some_prog tag 005a3d2123620c8b gpl run_time_ns 81632 run_cnt 10
loaded_at 2017-09-29T20:11:00+0000 uid O

xlated 528B jited 370B memlock 4096B map_ids 10

pids systemd(1)
bpftool --json --pretty prog show
{

"id": 10,
"type": "xdp",
"tag": "005a3d2123620c8b",
"gpl_compatible": true,
"run_time_ns": 81632,
"run_cnt": 10,
"loaded_at": 1506715860,
"uid™: 0,
"bytes xlated": 528,
"jited": true,
"bytes_jited": 370,
"bytes_memlock": 4096,
"map_ids": [10
1,
"pids™: [{

"pid™: 1,

"comm": "systemd"

]
bpftool prog dump xlated id 10 file /tmp/t

$Is -l /tmplt

-rW------- 1 root root 560 Jul 22 01:42 /tmp/t

Page 8/10

bpftool prog dump jited tag 005a3d2123620c8b
0: push %rbp
1: mov %rsp,%rbp
2. sub $0x228,%rsp
3: sub $0x28,%rbp
4: mov %rbx,0x0(%rbp)
mount -t bpf none /sys/fs/bpf/
bpftool prog pin id 10 /sys/fs/bpf/prog
bpftool prog load ./my_prog.o /sys/fs/bpf/prog2
s -l /sys/fs/bpf/
-rW------- 1 root root 0 Jul 22 01:43 prog
-W------- 1 root root 0 Jul 22 01:44 prog2
bpftool prog dump jited pinned /sys/fs/bpf/prog opcodes
0: push %rbp
55
1: mov %rsp,%rbp
48 89 e5
4: sub $0x228,%rsp
48 81 ec 28 02 00 00
b: sub $0x28,%rbp
48 83 ed 28
f: mov %rbx,0x0(%rbp)

48 89 5d 00

bpftool prog load xdpl_kern.o /sys/fs/bpf/xdpl type xdp map name rxcnt id 7

bpftool prog show pinned /sys/fs/bpf/xdpl
9: xdp name xdp_progl tag 539ec6cellb52f98 gpl

loaded_at 2018-06-25T16:17:31-0700 uid O

xlated 488B jited 336B memlock 4096B map_ids 7

rm /sys/fs/bpf/xdpl

bpftool prog profile id 337 duration 10 cycles instructions lic_misses

51397 run_cnt

40176203 cycles (83.05%)

42518139 instructions # 1.06 insns per cycle

Page 9/10

123 llc_misses # 2.89 LLC misses per million insns (83.15%)
Output below is for the trace logs.
Run in separate terminals:
bpftool prog tracelog
bpftool prog load -L -d file.o
bpftool-620059 [004] d... 2634685.517903: bpf trace_printk: btf load size 665 r=5
bpftool-620059 [004] d... 2634685.517912: bpf_trace_printk: map_create sample_map idx O type 2 value_size 4
value_btf id 0 r=6
bpftool-620059 [004] d... 2634685.517997: bpf_trace_printk: prog_load sample insn_cnt 13 r=7
bpftool-620059 [004] d... 2634685.517999: bpf trace_printk: close(5) =0
SEE ALSO
bpf(2), bpf-helpers(7), bpftool(8), bpftool-btf(8),
bpftool-cgroup(8), bpftool-feature(8), bpftool-gen(8),
bpftool-iter(8), bpftool-link(8), bpftool-map(8), bpftool-net(8),
bpftool-perf(8), bpftool-struct_ops(8)

BPFTOOL-PROG(8)

Page 10/10

