
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'bpftool-prog.8' command

$ man bpftool-prog.8

BPFTOOL-PROG(8) BPFTOOL-PROG(8)

NAME

 bpftool-prog - tool for inspection and simple manipulation of eBPF

 progs

SYNOPSIS

 bpftool [OPTIONS] prog COMMAND

 OPTIONS := { { -j | --json } [{ -p | --pretty }] | { -d | --debug }

 | { -l | --legacy } | { -f | --bpffs } | { -m | --mapcompat } | { -n

 | --nomount } | { -L | --use-loader } }

 COMMANDS := { show | list | dump xlated | dump jited | pin | load |

 loadall | help }

PROG COMMANDS

 bpftool prog { show | list } [PROG]

 bpftool prog dump xlated PROG [{file FILE | opcodes | visual | linum}]

 bpftool prog dump jited PROG [{file FILE | opcodes | linum}]

 bpftool prog pin PROG FILE

 bpftool prog { load | loadall } OBJ PATH [type TYPE] [map {idx IDX | name NAME} MAP] [dev NAME] [pinmaps

MAP_DIR]

 bpftool prog attach PROG ATTACH_TYPE [MAP]

 bpftool prog detach PROG ATTACH_TYPE [MAP]

 bpftool prog tracelog

 bpftool prog run PROG data_in FILE [data_out FILE [data_size_out L]] [ctx_in FILE [ctx_out FILE [ctx_size_out M]]]

[repeat N] Page 1/10

 bpftool prog profile PROG [duration DURATION] METRICs

 bpftool prog help

 MAP := { id MAP_ID | pinned FILE }

 PROG := { id PROG_ID | pinned FILE | tag PROG_TAG | name PROG_NAME }

 TYPE := {

 socket | kprobe | kretprobe | classifier | action |

 tracepoint | raw_tracepoint | xdp | perf_event | cgroup/skb |

 cgroup/sock | cgroup/dev | lwt_in | lwt_out | lwt_xmit |

 lwt_seg6local | sockops | sk_skb | sk_msg | lirc_mode2 |

 cgroup/bind4 | cgroup/bind6 | cgroup/post_bind4 | cgroup/post_bind6 |

 cgroup/connect4 | cgroup/connect6 | cgroup/getpeername4 | cgroup/getpeername6 |

 cgroup/getsockname4 | cgroup/getsockname6 | cgroup/sendmsg4 | cgroup/sendmsg6 |

 cgroup/recvmsg4 | cgroup/recvmsg6 | cgroup/sysctl |

 cgroup/getsockopt | cgroup/setsockopt | cgroup/sock_release |

 struct_ops | fentry | fexit | freplace | sk_lookup

 }

 ATTACH_TYPE := {

 sk_msg_verdict | sk_skb_verdict | sk_skb_stream_verdict |

 sk_skb_stream_parser | flow_dissector

 }

 METRICs := {

 cycles | instructions | l1d_loads | llc_misses |

 itlb_misses | dtlb_misses

 }

DESCRIPTION

 bpftool prog { show | list } [PROG]

 Show information about loaded programs. If PROG is specified

 show information only about given programs, otherwise list

 all programs currently loaded on the system. In case of tag

 or name, PROG may match several programs which will all be

 shown.

 Output will start with program ID followed by program type

 and zero or more named attributes (depending on kernel ver? Page 2/10

 sion).

 Since Linux 5.1 the kernel can collect statistics on BPF pro?

 grams (such as the total time spent running the program, and

 the number of times it was run). If available, bpftool shows

 such statistics. However, the kernel does not collect them by

 defaults, as it slightly impacts performance on each program

 run. Activation or deactivation of the feature is performed

 via the kernel.bpf_stats_enabled sysctl knob.

 Since Linux 5.8 bpftool is able to discover information about

 processes that hold open file descriptors (FDs) against BPF

 programs. On such kernels bpftool will automatically emit

 this information as well.

 bpftool prog dump xlated PROG [{ file FILE | opcodes | visual |

 linum }]

 Dump eBPF instructions of the programs from the kernel. By

 default, eBPF will be disassembled and printed to standard

 output in human-readable format. In this case, opcodes con?

 trols if raw opcodes should be printed as well.

 In case of tag or name, PROG may match several programs which

 will all be dumped. However, if file or visual is specified,

 PROG must match a single program.

 If file is specified, the binary image will instead be writ?

 ten to FILE.

 If visual is specified, control flow graph (CFG) will be

 built instead, and eBPF instructions will be presented with

 CFG in DOT format, on standard output.

 If the programs have line_info available, the source line

 will be displayed by default. If linum is specified, the

 filename, line number and line column will also be displayed

 on top of the source line.

 bpftool prog dump jited PROG [{ file FILE | opcodes | linum }]

 Dump jited image (host machine code) of the program.

 If FILE is specified image will be written to a file, other? Page 3/10

 wise it will be disassembled and printed to stdout. PROG

 must match a single program when file is specified.

 opcodes controls if raw opcodes will be printed.

 If the prog has line_info available, the source line will be

 displayed by default. If linum is specified, the filename,

 line number and line column will also be displayed on top of

 the source line.

 bpftool prog pin PROG FILE

 Pin program PROG as FILE.

 Note: FILE must be located in bpffs mount. It must not con?

 tain a dot character ('.'), which is reserved for future ex?

 tensions of bpffs.

 bpftool prog { load | loadall } OBJ PATH [type TYPE] [map {idx IDX |

 name NAME} MAP] [dev NAME] [pinmaps MAP_DIR]

 Load bpf program(s) from binary OBJ and pin as PATH. bpftool

 prog load pins only the first program from the OBJ as PATH.

 bpftool prog loadall pins all programs from the OBJ under

 PATH directory. type is optional, if not specified program

 type will be inferred from section names. By default bpftool

 will create new maps as declared in the ELF object being

 loaded. map parameter allows for the reuse of existing maps.

 It can be specified multiple times, each time for a different

 map. IDX refers to index of the map to be replaced in the

 ELF file counting from 0, while NAME allows to replace a map

 by name. MAP specifies the map to use, referring to it by id

 or through a pinned file. If dev NAME is specified program

 will be loaded onto given networking device (offload). Op?

 tional pinmaps argument can be provided to pin all maps under

 MAP_DIR directory.

 Note: PATH must be located in bpffs mount. It must not con?

 tain a dot character ('.'), which is reserved for future ex?

 tensions of bpffs.

 bpftool prog attach PROG ATTACH_TYPE [MAP] Page 4/10

 Attach bpf program PROG (with type specified by ATTACH_TYPE).

 Most ATTACH_TYPEs require a MAP parameter, with the exception

 of flow_dissector which is attached to current networking

 name space.

 bpftool prog detach PROG ATTACH_TYPE [MAP]

 Detach bpf program PROG (with type specified by ATTACH_TYPE).

 Most ATTACH_TYPEs require a MAP parameter, with the exception

 of flow_dissector which is detached from the current network?

 ing name space.

 bpftool prog tracelog

 Dump the trace pipe of the system to the console (stdout).

 Hit <Ctrl+C> to stop printing. BPF programs can write to this

 trace pipe at runtime with the bpf_trace_printk() helper.

 This should be used only for debugging purposes. For stream?

 ing data from BPF programs to user space, one can use perf

 events (see also bpftool-map(8)).

 bpftool prog run PROG data_in FILE [data_out FILE [data_size_out L]]

 [ctx_in FILE [ctx_out FILE [ctx_size_out M]]] [repeat N]

 Run BPF program PROG in the kernel testing infrastructure for

 BPF, meaning that the program works on the data and context

 provided by the user, and not on actual packets or monitored

 functions etc. Return value and duration for the test run are

 printed out to the console.

 Input data is read from the FILE passed with data_in. If

 this FILE is "-", input data is read from standard input. In?

 put context, if any, is read from FILE passed with ctx_in.

 Again, "-" can be used to read from standard input, but only

 if standard input is not already in use for input data. If a

 FILE is passed with data_out, output data is written to that

 file. Similarly, output context is written to the FILE passed

 with ctx_out. For both output flows, "-" can be used to print

 to the standard output (as plain text, or JSON if relevant

 option was passed). If output keywords are omitted, output Page 5/10

 data and context are discarded. Keywords data_size_out and

 ctx_size_out are used to pass the size (in bytes) for the

 output buffers to the kernel, although the default of 32 kB

 should be more than enough for most cases.

 Keyword repeat is used to indicate the number of consecutive

 runs to perform. Note that output data and context printed to

 files correspond to the last of those runs. The duration

 printed out at the end of the runs is an average over all

 runs performed by the command.

 Not all program types support test run. Among those which do,

 not all of them can take the ctx_in/ctx_out arguments.

 bpftool does not perform checks on program types.

 bpftool prog profile PROG [duration DURATION] METRICs

 Profile METRICs for bpf program PROG for DURATION seconds or

 until user hits <Ctrl+C>. DURATION is optional. If DURATION

 is not specified, the profiling will run up to UINT_MAX sec?

 onds.

 bpftool prog help

 Print short help message.

OPTIONS

 -h, --help

 Print short help message (similar to bpftool help).

 -V, --version

 Print bpftool's version number (similar to bpftool version),

 the number of the libbpf version in use, and optional fea?

 tures that were included when bpftool was compiled. Optional

 features include linking against libbfd to provide the disas?

 sembler for JIT-ted programs (bpftool prog dump jited) and

 usage of BPF skeletons (some features like bpftool prog pro?

 file or showing pids associated to BPF objects may rely on

 it).

 -j, --json

 Generate JSON output. For commands that cannot produce JSON, Page 6/10

 this option has no effect.

 -p, --pretty

 Generate human-readable JSON output. Implies -j.

 -d, --debug

 Print all logs available, even debug-level information. This

 includes logs from libbpf as well as from the verifier, when

 attempting to load programs.

 -l, --legacy

 Use legacy libbpf mode which has more relaxed BPF program re?

 quirements. By default, bpftool has more strict requirements

 about section names, changes pinning logic and doesn't sup?

 port some of the older non-BTF map declarations.

 See

 https://github.com/libbpf/libbpf/wiki/Libbpf:-the-road-to-v1.0

 for details.

 -f, --bpffs

 When showing BPF programs, show file names of pinned pro?

 grams.

 -m, --mapcompat

 Allow loading maps with unknown map definitions.

 -n, --nomount

 Do not automatically attempt to mount any virtual file system

 (such as tracefs or BPF virtual file system) when necessary.

 -L, --use-loader

 Load program as a "loader" program. This is useful to debug

 the generation of such programs. When this option is in use,

 bpftool attempts to load the programs from the object file

 into the kernel, but does not pin them (therefore, the PATH

 must not be provided).

 When combined with the -d|--debug option, additional debug

 messages are generated, and the execution of the loader pro?

 gram will use the bpf_trace_printk() helper to log each step

 of loading BTF, creating the maps, and loading the programs Page 7/10

 (see bpftool prog tracelog as a way to dump those messages).

EXAMPLES

 # bpftool prog show

 10: xdp name some_prog tag 005a3d2123620c8b gpl run_time_ns 81632 run_cnt 10

 loaded_at 2017-09-29T20:11:00+0000 uid 0

 xlated 528B jited 370B memlock 4096B map_ids 10

 pids systemd(1)

 # bpftool --json --pretty prog show

 [{

 "id": 10,

 "type": "xdp",

 "tag": "005a3d2123620c8b",

 "gpl_compatible": true,

 "run_time_ns": 81632,

 "run_cnt": 10,

 "loaded_at": 1506715860,

 "uid": 0,

 "bytes_xlated": 528,

 "jited": true,

 "bytes_jited": 370,

 "bytes_memlock": 4096,

 "map_ids": [10

],

 "pids": [{

 "pid": 1,

 "comm": "systemd"

 }

]

 }

]

 # bpftool prog dump xlated id 10 file /tmp/t

 $ ls -l /tmp/t

 -rw------- 1 root root 560 Jul 22 01:42 /tmp/t Page 8/10

 # bpftool prog dump jited tag 005a3d2123620c8b

 0: push %rbp

 1: mov %rsp,%rbp

 2: sub $0x228,%rsp

 3: sub $0x28,%rbp

 4: mov %rbx,0x0(%rbp)

 # mount -t bpf none /sys/fs/bpf/

 # bpftool prog pin id 10 /sys/fs/bpf/prog

 # bpftool prog load ./my_prog.o /sys/fs/bpf/prog2

 # ls -l /sys/fs/bpf/

 -rw------- 1 root root 0 Jul 22 01:43 prog

 -rw------- 1 root root 0 Jul 22 01:44 prog2

 # bpftool prog dump jited pinned /sys/fs/bpf/prog opcodes

 0: push %rbp

 55

 1: mov %rsp,%rbp

 48 89 e5

 4: sub $0x228,%rsp

 48 81 ec 28 02 00 00

 b: sub $0x28,%rbp

 48 83 ed 28

 f: mov %rbx,0x0(%rbp)

 48 89 5d 00

 # bpftool prog load xdp1_kern.o /sys/fs/bpf/xdp1 type xdp map name rxcnt id 7

 # bpftool prog show pinned /sys/fs/bpf/xdp1

 9: xdp name xdp_prog1 tag 539ec6ce11b52f98 gpl

 loaded_at 2018-06-25T16:17:31-0700 uid 0

 xlated 488B jited 336B memlock 4096B map_ids 7

 # rm /sys/fs/bpf/xdp1

 # bpftool prog profile id 337 duration 10 cycles instructions llc_misses

 51397 run_cnt

 40176203 cycles (83.05%)

 42518139 instructions # 1.06 insns per cycle (83.39%) Page 9/10

 123 llc_misses # 2.89 LLC misses per million insns (83.15%)

 Output below is for the trace logs.

 Run in separate terminals:

 # bpftool prog tracelog

 # bpftool prog load -L -d file.o

 bpftool-620059 [004] d... 2634685.517903: bpf_trace_printk: btf_load size 665 r=5

 bpftool-620059 [004] d... 2634685.517912: bpf_trace_printk: map_create sample_map idx 0 type 2 value_size 4

value_btf_id 0 r=6

 bpftool-620059 [004] d... 2634685.517997: bpf_trace_printk: prog_load sample insn_cnt 13 r=7

 bpftool-620059 [004] d... 2634685.517999: bpf_trace_printk: close(5) = 0

SEE ALSO

 bpf(2), bpf-helpers(7), bpftool(8), bpftool-btf(8),

 bpftool-cgroup(8), bpftool-feature(8), bpftool-gen(8),

 bpftool-iter(8), bpftool-link(8), bpftool-map(8), bpftool-net(8),

 bpftool-perf(8), bpftool-struct_ops(8)

 BPFTOOL-PROG(8)

Page 10/10

