r“‘ .

University

FPDF Library

Red H at PDF generator;
Enterprise Linux

Manual Pages

A

Full credit is given to the above companies including the 0S
that this PDF file was generated!

Red Hat Enterprise Linux Release 9.2 Manual Pages on 'cgroups.7' command
$ man cgroups.7
CGROUPS(7) Linux Programmer's Manual CGROUPS(7)
NAME
cgroups - Linux control groups
DESCRIPTION
Control groups, usually referred to as cgroups, are a Linux kernel fea?
ture which allow processes to be organized into hierarchical groups
whose usage of various types of resources can then be limited and moni?
tored. The kernel's cgroup interface is provided through a pseudo-
filesystem called cgroupfs. Grouping is implemented in the core cgroup
kernel code, while resource tracking and limits are implemented in a
set of per-resource-type subsystems (memory, CPU, and so on).
Terminology
A cgroup is a collection of processes that are bound to a set of limits
or parameters defined via the cgroup filesystem.
A subsystem is a kernel component that modifies the behavior of the
processes in a cgroup. Various subsystems have been implemented, mak?
ing it possible to do things such as limiting the amount of CPU time
and memory available to a cgroup, accounting for the CPU time used by a
cgroup, and freezing and resuming execution of the processes in a
cgroup. Subsystems are sometimes also known as resource controllers
(or simply, controllers).
The cgroups for a controller are arranged in a hierarchy. This hierar?

chy is defined by creating, removing, and renaming subdirectories Page 1/31

within the cgroup filesystem. At each level of the hierarchy, at?
tributes (e.g., limits) can be defined. The limits, control, and ac?
counting provided by cgroups generally have effect throughout the sub?
hierarchy underneath the cgroup where the attributes are defined.
Thus, for example, the limits placed on a cgroup at a higher level in
the hierarchy cannot be exceeded by descendant cgroups.

Cgroups version 1 and version 2
The initial release of the cgroups implementation was in Linux 2.6.24.
Over time, various cgroup controllers have been added to allow the man?
agement of various types of resources. However, the development of
these controllers was largely uncoordinated, with the result that many
inconsistencies arose between controllers and management of the cgroup
hierarchies became rather complex. A longer description of these prob?
lems can be found in the kernel source file Documentation/ad?
min-guide/cgroup-v2.rst (or Documentation/cgroup-v2.txt in Linux 4.17
and earlier).
Because of the problems with the initial cgroups implementation
(cgroups version 1), starting in Linux 3.10, work began on a new, or?
thogonal implementation to remedy these problems. Initially marked ex?
perimental, and hidden behind the -o _ DEVEL__sane_behavior mount op?
tion, the new version (cgroups version 2) was eventually made official
with the release of Linux 4.5. Differences between the two versions
are described in the text below. The file cgroup.sane_behavior,
present in cgroups v1, is a relic of this mount option. The file always
reports "0" and is only retained for backward compatibility.
Although cgroups v2 is intended as a replacement for cgroups v1, the
older system continues to exist (and for compatibility reasons is un?
likely to be removed). Currently, cgroups v2 implements only a subset
of the controllers available in cgroups v1. The two systems are imple?
mented so that both v1 controllers and v2 controllers can be mounted on
the same system. Thus, for example, it is possible to use those con?
trollers that are supported under version 2, while also using version 1

controllers where version 2 does not yet support those controllers. Page 2/31

The only restriction here is that a controller can't be simultaneously
employed in both a cgroups v1 hierarchy and in the cgroups v2 hierar?
chy.

CGROUPS VERSION 1
Under cgroups v1, each controller may be mounted against a separate
cgroup filesystem that provides its own hierarchical organization of
the processes on the system. Itis also possible to comount multiple
(or even all) cgroups v1 controllers against the same cgroup filesys?
tem, meaning that the comounted controllers manage the same hierarchi?
cal organization of processes.
For each mounted hierarchy, the directory tree mirrors the control
group hierarchy. Each control group is represented by a directory,
with each of its child control cgroups represented as a child direc?
tory. For instance, /user/joe/l.session represents control group
1.session, which is a child of cgroup joe, which is a child of /user.
Under each cgroup directory is a set of files which can be read or
written to, reflecting resource limits and a few general cgroup proper?
ties.

Tasks (threads) versus processes

In cgroups v1, a distinction is drawn between processes and tasks. In
this view, a process can consist of multiple tasks (more commonly
called threads, from a user-space perspective, and called such in the
remainder of this man page). In cgroups vl, it is possible to indepen?
dently manipulate the cgroup memberships of the threads in a process.
The cgroups v1 ability to split threads across different cgroups caused
problems in some cases. For example, it made no sense for the memory
controller, since all of the threads of a process share a single ad?
dress space. Because of these problems, the ability to independently
manipulate the cgroup memberships of the threads in a process was re?
moved in the initial cgroups v2 implementation, and subsequently re?
stored in a more limited form (see the discussion of "thread mode" be?
low).

Mounting v1 controllers Page 3/31

The use of cgroups requires a kernel built with the CONFIG_CGROUP op?
tion. In addition, each of the v1 controllers has an associated con?
figuration option that must be set in order to employ that controller.
In order to use a v1 controller, it must be mounted against a cgroup
filesystem. The usual place for such mounts is under a tmpfs(5)
filesystem mounted at /sys/fs/cgroup. Thus, one might mount the cpu
controller as follows:

mount -t cgroup -o cpu none /sys/fs/cgroup/cpu
It is possible to comount multiple controllers against the same hierar?
chy. For example, here the cpu and cpuacct controllers are comounted
against a single hierarchy:

mount -t cgroup -0 cpu,cpuacct none /sys/fs/cgroup/cpu,cpuacct
Comounting controllers has the effect that a process is in the same
cgroup for all of the comounted controllers. Separately mounting con?
trollers allows a process to be in cgroup /fool for one controller
while being in /foo2/foo3 for another.
It is possible to comount all v1 controllers against the same hierar?
chy:

mount -t cgroup -o all cgroup /sys/fs/cgroup
(One can achieve the same result by omitting -o all, since it is the
default if no controllers are explicitly specified.)
It is not possible to mount the same controller against multiple cgroup
hierarchies. For example, it is not possible to mount both the cpu and
cpuacct controllers against one hierarchy, and to mount the cpu con?
troller alone against another hierarchy. It is possible to create mul?
tiple mount points with exactly the same set of comounted controllers.
However, in this case all that results is multiple mount points provid?
ing a view of the same hierarchy.
Note that on many systems, the v1 controllers are automatically mounted
under /sys/fs/cgroup; in particular, systemd(1) automatically creates
such mount points.

Unmounting v1 controllers

A mounted cgroup filesystem can be unmounted using the umount(8) com? Page 4/31

mand, as in the following example:
umount /sys/fs/cgroup/pids
But note well: a cgroup filesystem is unmounted only if it is not busy,
that is, it has no child cgroups. If this is not the case, then the
only effect of the umount(8) is to make the mount invisible. Thus, to
ensure that the mount point is really removed, one must first remove
all child cgroups, which in turn can be done only after all member pro?
cesses have been moved from those cgroups to the root cgroup.
Cgroups version 1 controllers
Each of the cgroups version 1 controllers is governed by a kernel con?
figuration option (listed below). Additionally, the availability of
the cgroups feature is governed by the CONFIG_CGROUPS kernel configura?
tion option.
cpu (since Linux 2.6.24; CONFIG_CGROUP_SCHED)
Cgroups can be guaranteed a minimum number of "CPU shares" when
a system is busy. This does not limit a cgroup's CPU usage if
the CPUs are not busy. For further information, see Documenta?
tion/scheduler/sched-design-CFS.rst (or Documentation/sched?
uler/sched-design-CFS.txt in Linux 5.2 and earlier).
In Linux 3.2, this controller was extended to provide CPU "band?
width" control. If the kernel is configured with CON?
FIG_CFS_BANDWIDTH, then within each scheduling period (defined
via a file in the cgroup directory), it is possible to define an
upper limit on the CPU time allocated to the processes in a
cgroup. This upper limit applies even if there is no other com?
petition for the CPU. Further information can be found in the
kernel source file Documentation/scheduler/sched-bwec.rst (or
Documentation/scheduler/sched-bwec.txt in Linux 5.2 and earlier).
cpuacct (since Linux 2.6.24; CONFIG_CGROUP_CPUACCT)
This provides accounting for CPU usage by groups of processes.
Further information can be found in the kernel source file Docu?
mentation/admin-guide/cgroup-vl/cpuacct.rst (or Documenta?

tion/cgroup-vl/cpuacct.txt in Linux 5.2 and earlier). Page 5/31

cpuset (since Linux 2.6.24; CONFIG_CPUSETS)
This cgroup can be used to bind the processes in a cgroup to a
specified set of CPUs and NUMA nodes.
Further information can be found in the kernel source file Docu?
mentation/admin-guide/cgroup-vl/cpusets.rst (or Documenta?
tion/cgroup-vl/cpusets.txt in Linux 5.2 and earlier).

memory (since Linux 2.6.25; CONFIG_MEMCG)
The memory controller supports reporting and limiting of process
memory, kernel memory, and swap used by cgroups.
Further information can be found in the kernel source file Docu?
mentation/admin-guide/cgroup-vl/memory.rst (or Documenta?
tion/cgroup-vl/memory.txt in Linux 5.2 and earlier).

devices (since Linux 2.6.26; CONFIG_CGROUP_DEVICE)
This supports controlling which processes may create (mknod) de?
vices as well as open them for reading or writing. The policies
may be specified as allow-lists and deny-lists. Hierarchy is
enforced, so new rules must not violate existing rules for the
target or ancestor cgroups.
Further information can be found in the kernel source file Docu?
mentation/admin-guide/cgroup-vl/devices.rst (or Documenta?
tion/cgroup-vl/devices.txt in Linux 5.2 and earlier).

freezer (since Linux 2.6.28; CONFIG_CGROUP_FREEZER)
The freezer cgroup can suspend and restore (resume) all pro?
cesses in a cgroup. Freezing a cgroup /A also causes its chil?
dren, for example, processes in /A/B, to be frozen.
Further information can be found in the kernel source file Docu?
mentation/admin-guide/cgroup-vl/freezer-subsystem.rst (or Docu?
mentation/cgroup-vl/freezer-subsystem.txt in Linux 5.2 and ear?
lier).

net_cls (since Linux 2.6.29; CONFIG_CGROUP_NET_CLASSID)
This places a classid, specified for the cgroup, on network
packets created by a cgroup. These classids can then be used in

firewall rules, as well as used to shape traffic using tc(8). Page 6/31

This applies only to packets leaving the cgroup, not to traffic
arriving at the cgroup.
Further information can be found in the kernel source file Docu?
mentation/admin-guide/cgroup-vl/net cls.rst (or Documenta?
tion/cgroup-vl/net_cls.txt in Linux 5.2 and earlier).

blkio (since Linux 2.6.33; CONFIG_BLK_CGROUP)
The blkio cgroup controls and limits access to specified block
devices by applying 10 control in the form of throttling and up?
per limits against leaf nodes and intermediate nodes in the
storage hierarchy.
Two policies are available. The first is a proportional-weight
time-based division of disk implemented with CFQ. This is in
effect for leaf nodes using CFQ. The second is a throttling
policy which specifies upper 1/O rate limits on a device.
Further information can be found in the kernel source file Docu?
mentation/admin-guide/cgroup-vl/blkio-controller.rst (or Docu?
mentation/cgroup-v1/blkio-controller.txt in Linux 5.2 and ear?
lier).

perf_event (since Linux 2.6.39; CONFIG_CGROUP_PERF)
This controller allows perf monitoring of the set of processes
grouped in a cgroup.
Further information can be found in the kernel source files

net_prio (since Linux 3.3; CONFIG_CGROUP_NET_PRIO)
This allows priorities to be specified, per network interface,
for cgroups.
Further information can be found in the kernel source file Docu?
mentation/admin-guide/cgroup-vl/net_prio.rst (or Documenta?
tion/cgroup-vl/net_prio.txt in Linux 5.2 and earlier).

hugetlb (since Linux 3.5; CONFIG_CGROUP_HUGETLB)
This supports limiting the use of huge pages by cgroups.
Further information can be found in the kernel source file Docu?
mentation/admin-guide/cgroup-vl/hugetlb.rst (or Documenta?

tion/cgroup-v1l/hugetlb.txt in Linux 5.2 and earlier). Page 7/31

pids (since Linux 4.3; CONFIG_CGROUP_PIDS)
This controller permits limiting the number of process that may
be created in a cgroup (and its descendants).
Further information can be found in the kernel source file Docu?
mentation/admin-guide/cgroup-vl/pids.rst ~ (or Documenta?
tion/cgroup-v1/pids.txt in Linux 5.2 and earlier).
rdma (since Linux 4.11; CONFIG_CGROUP_RDMA)
The RDMA controller permits limiting the use of RDMA/IB-specific
resources per cgroup.
Further information can be found in the kernel source file Docu?
mentation/admin-guide/cgroup-vl/rdma.rst (or Documenta?
tion/cgroup-vl/rdma.txt in Linux 5.2 and earlier).
Creating cgroups and moving processes
A cgroup filesystem initially contains a single root cgroup, '/, which
all processes belong to. A new cgroup is created by creating a direc?
tory in the cgroup filesystem:
mkdir /sys/fs/cgroup/cpu/cgl
This creates a new empty cgroup.
A process may be moved to this cgroup by writing its PID into the
cgroup's cgroup.procs file:
echo $$ > /sys/fs/cgroup/cpu/cgl/cgroup.procs
Only one PID at a time should be written to this file.
Writing the value 0 to a cgroup.procs file causes the writing process
to be moved to the corresponding cgroup.
When writing a PID into the cgroup.procs, all threads in the process
are moved into the new cgroup at once.
Within a hierarchy, a process can be a member of exactly one cgroup.
Writing a process's PID to a cgroup.procs file automatically removes it
from the cgroup of which it was previously a member.
The cgroup.procs file can be read to obtain a list of the processes
that are members of a cgroup. The returned list of PIDs is not guaran?
teed to be in order. Nor is it guaranteed to be free of duplicates.

(For example, a PID may be recycled while reading from the list.) Page 8/31

In cgroups v1, an individual thread can be moved to another cgroup by
writing its thread ID (i.e., the kernel thread ID returned by clone(2)
and gettid(2)) to the tasks file in a cgroup directory. This file can
be read to discover the set of threads that are members of the cgroup.
Removing cgroups
To remove a cgroup, it must first have no child cgroups and contain no
(nonzombie) processes. So long as that is the case, one can simply re?
move the corresponding directory pathname. Note that files in a cgroup
directory cannot and need not be removed.
Cgroups V1 release notification
Two files can be used to determine whether the kernel provides notifi?
cations when a cgroup becomes empty. A cgroup is considered to be
empty when it contains no child cgroups and no member processes.
A special file in the root directory of each cgroup hierarchy, re?
lease_agent, can be used to register the pathname of a program that may
be invoked when a cgroup in the hierarchy becomes empty. The pathname
of the newly empty cgroup (relative to the cgroup mount point) is pro?
vided as the sole command-line argument when the release_agent program
is invoked. The release_agent program might remove the cgroup direc?
tory, or perhaps repopulate it with a process.
The default value of the release_agent file is empty, meaning that no
release agent is invoked.
The content of the release_agent file can also be specified via a mount
option when the cgroup filesystem is mounted:
mount -o release_agent=pathname ...
Whether or not the release_agent program is invoked when a particular
cgroup becomes empty is determined by the value in the notify _on_re?
lease file in the corresponding cgroup directory. If this file con?
tains the value 0, then the release_agent program is not invoked. If
it contains the value 1, the release_agent program is invoked. The de?
fault value for this file in the root cgroup is 0. At the time when a
new cgroup is created, the value in this file is inherited from the

corresponding file in the parent cgroup. Page 9/31

Cgroup v1 named hierarchies

In cgroups V1, it is possible to mount a cgroup hierarchy that has no

attached controllers:
mount -t cgroup -0 none,name=somename none /some/mount/point

Multiple instances of such hierarchies can be mounted; each hierarchy

must have a unique name. The only purpose of such hierarchies is to

track processes. (See the discussion of release notification below.)

An example of this is the name=systemd cgroup hierarchy that is used by

systemd(1) to track services and user sessions.

Since Linux 5.0, the cgroup_no_v1 kernel boot option (described below)

can be used to disable cgroup vl named hierarchies, by specifying

cgroup_no_vl=named.
CGROUPS VERSION 2

In cgroups v2, all mounted controllers reside in a single unified hier?

archy. While (different) controllers may be simultaneously mounted un?

der the vl and v2 hierarchies, it is not possible to mount the same
controller simultaneously under both the v1 and the v2 hierarchies.

The new behaviors in cgroups v2 are summarized here, and in some cases

elaborated in the following subsections.

1. Cgroups v2 provides a unified hierarchy against which all con?
trollers are mounted.

2. "Internal" processes are not permitted. With the exception of the
root cgroup, processes may reside only in leaf nodes (cgroups that
do not themselves contain child cgroups). The details are somewhat
more subtle than this, and are described below.

3. Active cgroups must be specified via the files cgroup.controllers
and cgroup.subtree_control.

4. The tasks file has been removed. In addition, the
cgroup.clone_children file that is employed by the cpuset controller
has been removed.

5. An improved mechanism for notification of empty cgroups is provided
by the cgroup.events file.

For more changes, see the Documentation/admin-guide/cgroup-v2.rst file Page 10/31

in the kernel source (or Documentation/cgroup-v2.txt in Linux 4.17 and
earlier).
Some of the new behaviors listed above saw subsequent modification with
the addition in Linux 4.14 of "thread mode" (described below).
Cgroups v2 unified hierarchy
In cgroups v1, the ability to mount different controllers against dif?
ferent hierarchies was intended to allow great flexibility for applica?
tion design. In practice, though, the flexibility turned out to be
less useful than expected, and in many cases added complexity. There?
fore, in cgroups v2, all available controllers are mounted against a
single hierarchy. The available controllers are automatically mounted,
meaning that it is not necessary (or possible) to specify the con?
trollers when mounting the cgroup v2 filesystem using a command such as
the following:
mount -t cgroup2 none /mnt/cgroup2
A cgroup v2 controller is available only if it is not currently in use
via a mount against a cgroup v1 hierarchy. Or, to put things another
way, it is not possible to employ the same controller against both a v1
hierarchy and the unified v2 hierarchy. This means that it may be nec?
essary first to unmount a v1 controller (as described above) before
that controller is available in v2. Since systemd(1) makes heavy use
of some v1 controllers by default, it can in some cases be simpler to
boot the system with selected v1 controllers disabled. To do this,
specify the cgroup_no_vl1=list option on the kernel boot command line;
list is a comma-separated list of the names of the controllers to dis?
able, or the word all to disable all v1 controllers. (This situation
is correctly handled by systemd(1), which falls back to operating with?
out the specified controllers.)
Note that on many modern systems, systemd(1) automatically mounts the
cgroup? filesystem at /sys/fs/cgroup/unified during the boot process.
Cgroups v2 mount options
The following options (mount -0) can be specified when mounting the

group v2 filesystem: Page 11/31

nsdelegate (since Linux 4.15)
Treat cgroup namespaces as delegation boundaries. For details,
see below.
memory_localevents (since Linux 5.2)
The memory.events should show statistics only for the cgroup it?
self, and not for any descendant cgroups. This was the behavior
before Linux 5.2. Starting in Linux 5.2, the default behavior
is to include statistics for descendant cgroups in mem?
ory.events, and this mount option can be used to revert to the
legacy behavior. This option is system wide and can be set on
mount or modified through remount only from the initial mount
namespace; it is silently ignored in noninitial namespaces.
Cgroups v2 controllers
The following controllers, documented in the kernel source file Docu?
mentation/admin-guide/cgroup-v2.rst (or Documentation/cgroup-v2.txt in
Linux 4.17 and earlier), are supported in cgroups version 2:
cpu (since Linux 4.15)
This is the successor to the version 1 cpu and cpuacct con?
trollers.
cpuset (since Linux 5.0)
This is the successor of the version 1 cpuset controller.
freezer (since Linux 5.2)
This is the successor of the version 1 freezer controller.
hugetlb (since Linux 5.6)
This is the successor of the version 1 hugetlb controller.
io (since Linux 4.5)
This is the successor of the version 1 blkio controller.
memory (since Linux 4.5)
This is the successor of the version 1 memaory controller.
perf_event (since Linux 4.11)
This is the same as the version 1 perf_event controller.
pids (since Linux 4.5)

This is the same as the version 1 pids controller. Page 12/31

rdma (since Linux 4.11)
This is the same as the version 1 rdma controller.
There is no direct equivalent of the net_cls and net_prio controllers
from cgroups version 1. Instead, support has been added to iptables(8)
to allow eBPF filters that hook on cgroup v2 pathnames to make deci?
sions about network traffic on a per-cgroup basis.
The v2 devices controller provides no interface files; instead, device
control is gated by attaching an eBPF (BPF_CGROUP_DEVICE) program to a
V2 cgroup.
Cgroups v2 subtree control
Each cgroup in the v2 hierarchy contains the following two files:
cgroup.controllers
This read-only file exposes a list of the controllers that are
available in this cgroup. The contents of this file match the
contents of the cgroup.subtree_control file in the parent
cgroup.
cgroup.subtree_control
This is a list of controllers that are active (enabled) in the
cgroup. The set of controllers in this file is a subset of the
set in the cgroup.controllers of this cgroup. The set of active
controllers is modified by writing strings to this file contain?
ing space-delimited controller names, each preceded by '+' (to
enable a controller) or '-' (to disable a controller), as in the
following example:
echo '+pids -memory' > x/y/cgroup.subtree_control
An attempt to enable a controller that is not presentin
cgroup.controllers leads to an ENOENT error when writing to the
cgroup.subtree_control file.
Because the list of controllers in cgroup.subtree_control is a subset
of those cgroup.controllers, a controller that has been disabled in one
cgroup in the hierarchy can never be re-enabled in the subtree below
that cgroup.

A cgroup's cgroup.subtree_control file determines the set of con? Page 13/31

trollers that are exercised in the child cgroups. When a controller
(e.g., pids) is present in the cgroup.subtree_control file of a parent
cgroup, then the corresponding controller-interface files (e.g.,
pids.max) are automatically created in the children of that cgroup and
can be used to exert resource control in the child cgroups.

Cgroups v2 "no internal processes" rule
Cgroups v2 enforces a so-called "no internal processes" rule. Roughly
speaking, this rule means that, with the exception of the root cgroup,
processes may reside only in leaf nodes (cgroups that do not themselves
contain child cgroups). This avoids the need to decide how to parti?
tion resources between processes which are members of cgroup A and pro?
cesses in child cgroups of A.
For instance, if cgroup /cgl/cg?2 exists, then a process may reside in
/cgl/cg2, but not in /cgl. This is to avoid an ambiguity in cgroups v1
with respect to the delegation of resources between processes in /cgl
and its child cgroups. The recommended approach in cgroups v2 is to
create a subdirectory called leaf for any nonleaf cgroup which should
contain processes, but no child cgroups. Thus, processes which previ?
ously would have gone into /cgl would now go into /cgl/leaf. This has
the advantage of making explicit the relationship between processes in
/cgl/leaf and /cgl's other children.
The "no internal processes" rule is in fact more subtle than stated
above. More precisely, the rule is that a (nonroot) cgroup can't both
(1) have member processes, and (2) distribute resources into child
cgroups?that is, have a nonempty cgroup.subtree_control file. Thus, it
is possible for a cgroup to have both member processes and child
cgroups, but before controllers can be enabled for that cgroup, the
member processes must be moved out of the cgroup (e.g., perhaps into
the child cgroups).
With the Linux 4.14 addition of "thread mode" (described below), the
"no internal processes" rule has been relaxed in some cases.

Cgroups v2 cgroup.events file

Each nonroot cgroup in the v2 hierarchy contains a read-only file, Page 14/31

cgroup.events, whose contents are key-value pairs (delimited by newline
characters, with the key and value separated by spaces) providing state
information about the cgroup:
$ cat mygrp/cgroup.events
populated 1
frozen O
The following keys may appear in this file:
populated
The value of this key is either 1, if this cgroup or any of its
descendants has member processes, or otherwise 0.
frozen (since Linux 5.2)
The value of this key is 1 if this cgroup is currently frozen,
or O if it is not.
The cgroup.events file can be monitored, in order to receive notifica?
tion when the value of one of its keys changes. Such monitoring can be
done using inotify(7), which notifies changes as IN_MODIFY events, or
poll(2), which naotifies changes by returning the POLLPRI and POLLERR
bits in the revents field.
Cgroup v2 release notification
Cgroups v2 provides a new mechanism for obtaining notification when a
cgroup becomes empty. The cgroups vl release_agent and notify _on_re?
lease files are removed, and replaced by the populated key in the
cgroup.events file. This key either has the value 0, meaning that the
cgroup (and its descendants) contain no (honzombie) member processes,
or 1, meaning that the cgroup (or one of its descendants) contains mem?
ber processes.
The cgroups v2 release-notification mechanism offers the following ad?
vantages over the cgroups v1 release_agent mechanism:
* |t allows for cheaper natification, since a single process can moni?
tor multiple cgroup.events files (using the techniques described
earlier). By contrast, the cgroups vl mechanism requires the ex?
pense of creating a process for each notification.

* Notification for different cgroup subhierarchies can be delegated to Page 15/31

different processes. By contrast, the cgroups vl mechanism allows
only one release agent for an entire hierarchy.
Cgroups v2 cgroup.stat file
Each cgroup in the v2 hierarchy contains a read-only cgroup.stat file
(first introduced in Linux 4.14) that consists of lines containing key-
value pairs. The following keys currently appear in this file:
nr_descendants
This is the total number of visible (i.e., living) descendant
cgroups underneath this cgroup.
nr_dying_descendants
This is the total number of dying descendant cgroups underneath
this cgroup. A cgroup enters the dying state after being
deleted. It remainsin that state for an undefined period
(which will depend on system load) while resources are freed be?
fore the cgroup is destroyed. Note that the presence of some
cgroups in the dying state is normal, and is not indicative of
any problem.
A process can't be made a member of a dying cgroup, and a dying
cgroup can't be brought back to life.
Limiting the number of descendant cgroups
Each cgroup in the v2 hierarchy contains the following files, which can
be used to view and set limits on the number of descendant cgroups un?
der that cgroup:
cgroup.max.depth (since Linux 4.14)
This file defines a limit on the depth of nesting of descendant
cgroups. A value of 0 in this file means that no descendant
cgroups can be created. An attempt to create a descendant whose
nesting level exceeds the limit fails (mkdir(2) fails with the
error EAGAIN).
Writing the string "max" to this file means that no limit is im?
posed. The default value in this file is "max".
cgroup.max.descendants (since Linux 4.14)

This file defines a limit on the number of live descendant Page 16/31

cgroups that this cgroup may have. An attempt to create more
descendants than allowed by the limit fails (mkdir(2) fails with
the error EAGAIN).

Writing the string "max" to this file means that no limit is im?
posed. The default value in this file is "max".

CGROUPS DELEGATION: DELEGATING A HIERARCHY TO A LESS PRIVILEGED USER
In the context of cgroups, delegation means passing management of some
subtree of the cgroup hierarchy to a nonprivileged user. Cgroups v1
provides support for delegation based on file permissions in the cgroup
hierarchy but with less strict containment rules than v2 (as noted be?
low). Cgroups v2 supports delegation with containment by explicit de?
sign. The focus of the discussion in this section is on delegation in
cgroups v2, with some differences for cgroups v1 noted along the way.
Some terminology is required in order to describe delegation. A dele?
gater is a privileged user (i.e., root) who owns a parent cgroup. A
delegatee is a nonprivileged user who will be granted the permissions
needed to manage some subhierarchy under that parent cgroup, known as
the delegated subtree.

To perform delegation, the delegater makes certain directories and
files writable by the delegatee, typically by changing the ownership of
the objects to be the user ID of the delegatee. Assuming that we want
to delegate the hierarchy rooted at (say) /digt_grp and that there are
not yet any child cgroups under that cgroup, the ownership of the fol?
lowing is changed to the user ID of the delegatee:
/digt_grp
Changing the ownership of the root of the subtree means that any
new cgroups created under the subtree (and the files they con?
tain) will also be owned by the delegatee.
/digt_grp/cgroup.procs
Changing the ownership of this file means that the delegatee can
move processes into the root of the delegated subtree.
/digt_grp/cgroup.subtree_control (cgroups v2 only)

Changing the ownership of this file means that the delegatee can Page 17/31

enable controllers (that are present in /digt_grp/cgroup.con?

trollers) in order to further redistribute resources at lower

levels in the subtree. (As an alternative to changing the own?

ership of this file, the delegater might instead add selected

controllers to this file.)
/digt_grp/cgroup.threads (cgroups v2 only)

Changing the ownership of this file is necessary if a threaded

subtree is being delegated (see the description of "thread

mode", below). This permits the delegatee to write thread IDs

to the file. (The ownership of this file can also be changed

when delegating a domain subtree, but currently this serves no

purpose, since, as described below, it is not possible to move a

thread between domain cgroups by writing its thread ID to the

cgroup.threads file.)

In cgroups v1, the corresponding file that should instead be

delegated is the tasks file.
The delegater should not change the ownership of any of the controller
interfaces files (e.g., pids.max, memory.high) in digt_grp. Those
files are used from the next level above the delegated subtree in order
to distribute resources into the subtree, and the delegatee should not
have permission to change the resources that are distributed into the
delegated subtree.
See also the discussion of the /sys/kernel/cgroup/delegate file in
NOTES for information about further delegatable files in cgroups v2.
After the aforementioned steps have been performed, the delegatee can
create child cgroups within the delegated subtree (the cgroup subdirec?
tories and the files they contain will be owned by the delegatee) and
move processes between cgroups in the subtree. If some controllers are
present in dlgt_grp/cgroup.subtree_control, or the ownership of that
file was passed to the delegatee, the delegatee can also control the
further redistribution of the corresponding resources into the dele?
gated subtree.

Cgroups v2 delegation: nsdelegate and cgroup namespaces Page 18/31

Starting with Linux 4.13, there is a second way to perform cgroup dele?
gation in the cgroups v2 hierarchy. This is done by mounting or re?
mounting the cgroup v2 filesystem with the nsdelegate mount option.
For example, if the cgroup v2 filesystem has already been mounted, we
can remount it with the nsdelegate option as follows:
mount -t cgroup2 -o remount,nsdelegate \
none /sysl/fs/cgroup/unified

The effect of this mount option is to cause cgroup hamespaces to auto?

matically become delegation boundaries. More specifically, the follow?

ing restrictions apply for processes inside the cgroup namespace:

* Writes to controller interface files in the root directory of the
namespace will fail with the error EPERM. Processes inside the
cgroup namespace can still write to delegatable files in the root
directory of the cgroup namespace such as cgroup.procs and
cgroup.subtree_control, and can create subhierarchy underneath the
root directory.

* Attempts to migrate processes across the namespace boundary are de?
nied (with the error ENOENT). Processes inside the cgroup namespace
can still (subject to the containment rules described below) move
processes between cgroups within the subhierarchy under the name?
space root.

The ability to define cgroup namespaces as delegation boundaries makes

cgroup namespaces more useful. To understand why, suppose that we al?

ready have one cgroup hierarchy that has been delegated to a nonprivi?
leged user, cecilia, using the older delegation technique described
above. Suppose further that cecilia wanted to further delegate a sub?
hierarchy under the existing delegated hierarchy. (For example, the
delegated hierarchy might be associated with an unprivileged container

run by cecilia.) Even if a cgroup namespace was employed, because both

hierarchies are owned by the unprivileged user cecilia, the following
illegitimate actions could be performed:

* A process in the inferior hierarchy could change the resource con?

troller settings in the root directory of that hierarchy. (These

Page 19/31

resource controller settings are intended to allow control to be ex?
ercised from the parent cgroup; a process inside the child cgroup
should not be allowed to modify them.)

* A process inside the inferior hierarchy could move processes into
and out of the inferior hierarchy if the cgroups in the superior hi?
erarchy were somehow visible.

Employing the nsdelegate mount option prevents both of these possibili?

ties.

The nsdelegate mount option only has an effect when performed in the

initial mount namespace; in other mount namespaces, the option is

silently ignored.

Note: On some systems, systemd(1) automatically mounts the cgroup v2

filesystem. In order to experiment with the nsdelegate operation, it

may be useful to boot the kernel with the following command-line op?
tions:
cgroup_no_vl=all systemd.legacy_systemd_cgroup_controller

These options cause the kernel to boot with the cgroups v1 controllers

disabled (meaning that the controllers are available in the v2 hierar?

chy), and tells systemd(1) not to mount and use the cgroup v2 hierar?
chy, so that the v2 hierarchy can be manually mounted with the desired
options after boot-up.

Cgroup delegation containment rules

Some delegation containment rules ensure that the delegatee can move

processes between cgroups within the delegated subtree, but can't move

processes from outside the delegated subtree into the subtree or vice
versa. A nonprivileged process (i.e., the delegatee) can write the PID

of a "target" process into a cgroup.procs file only if all of the fol?

lowing are true:

* The writer has write permission on the cgroup.procs file in the des?
tination cgroup.

* The writer has write permission on the cgroup.procs file in the
nearest common ancestor of the source and destination cgroups. Note

that in some cases, the nearest common ancestor may be the source or Page 20/31

destination cgroup itself. This requirement is not enforced for
cgroups v1 hierarchies, with the consequence that containment in v1
is less strict than inv2. (For example, in cgroups v1 the user

that owns two distinct delegated subhierarchies can move a process
between the hierarchies.)

* |If the cgroup v2 filesystem was mounted with the nsdelegate option,
the writer must be able to see the source and destination cgroups
from its cgroup namespace.

* |n cgroups v1: the effective UID of the writer (i.e., the delegatee)
matches the real user ID or the saved set-user-ID of the target
process. Before Linux 4.11, this requirement also applied in
cgroups v2 (This was a historical requirement inherited from cgroups
vl that was later deemed unnecessary, since the other rules suffice
for containment in cgroups v2.)

Note: one consequence of these delegation containment rules is that the

unprivileged delegatee can't place the first process into the delegated

subtree; instead, the delegater must place the first process (a process
owned by the delegatee) into the delegated subtree.
CGROUPS VERSION 2 THREAD MODE

Among the restrictions imposed by cgroups v2 that were not present in

cgroups Vv1 are the following:

* No thread-granularity control: all of the threads of a process must
be in the same cgroup.

* No internal processes: a cgroup can't both have member processes and
exercise controllers on child cgroups.

Both of these restrictions were added because the lack of these re?

strictions had caused problems in cgroups v1. In particular, the

cgroups v1 ability to allow thread-level granularity for cgroup member?
ship made no sense for some controllers. (A notable example was the
memory controller: since threads share an address space, it made no
sense to split threads across different memory cgroups.)

Notwithstanding the initial design decision in cgroups v2, there were

use cases for certain controllers, notably the cpu controller, for Page 21/31

which thread-level granularity of control was meaningful and useful.

To accommodate such use cases, Linux 4.14 added thread mode for cgroups

V2.

Thread mode allows the following:

* The creation of threaded subtrees in which the threads of a process
may be spread across cgroups inside the tree. (A threaded subtree
may contain multiple multithreaded processes.)

* The concept of threaded controllers, which can distribute resources
across the cgroups in a threaded subtree.

* A relaxation of the "no internal processes rule", so that, within a

threaded subtree, a cgroup can both contain member threads and exer?

cise resource control over child cgroups.

With the addition of thread mode, each nonroot cgroup now contains a

new file, cgroup.type, that exposes, and in some circumstances can be

used to change, the "type" of a cgroup. This file contains one of the

following type values:

domain This is a normal v2 cgroup that provides process-granularity
control. If a process is a member of this cgroup, then all
threads of the process are (by definition) in the same cgroup.
This is the default cgroup type, and provides the same behavior
that was provided for cgroups in the initial cgroups v2 imple?
mentation.

threaded
This cgroup is a member of a threaded subtree. Threads can be
added to this cgroup, and controllers can be enabled for the
cgroup.

domain threaded
This is a domain cgroup that serves as the root of a threaded
subtree. This cgroup type is also known as "threaded root".

domain invalid
This is a cgroup inside a threaded subtree that is in an "in?
valid" state. Processes can't be added to the cgroup, and con?

trollers can't be enabled for the cgroup. The only thing that

Page 22/31

can be done with this cgroup (other than deleting it) is to con?
vert it to a threaded cgroup by writing the string "threaded" to
the cgroup.type file.
The rationale for the existence of this "interim" type during
the creation of a threaded subtree (rather than the kernel sim?
ply immediately converting all cgroups under the threaded root
to the type threaded) is to allow for possible future extensions
to the thread mode model

Threaded versus domain controllers

With the addition of threads mode, cgroups v2 now distinguishes two

types of resource controllers:

* Threaded controllers: these controllers support thread-granularity
for resource control and can be enabled inside threaded subtrees,
with the result that the corresponding controller-interface files
appear inside the cgroups in the threaded subtree. As at Linux
4.19, the following controllers are threaded: cpu, perf_event, and
pids.

* Domain controllers: these controllers support only process granular?
ity for resource control. From the perspective of a domain con?
troller, all threads of a process are always in the same cgroup.
Domain controllers can't be enabled inside a threaded subtree.

Creating a threaded subtree

There are two pathways that lead to the creation of a threaded subtree.

The first pathway proceeds as follows:

1. We write the string "threaded" to the cgroup.type file of a cgroup
y/z that currently has the type domain. This has the following ef?
fects:

* The type of the cgroup y/z becomes threaded.

* The type of the parent cgroup, y, becomes domain threaded. The
parent cgroup is the root of a threaded subtree (also known as
the "threaded root").

* All other cgroups under y that were not already of type threaded

(because they were inside already existing threaded subtrees un? Page 23/31

der the new threaded root) are converted to type domain invalid.
Any subsequently created cgroups under y will also have the type
domain invalid.

2. We write the string "threaded" to each of the domain invalid cgroups
under vy, in order to convert them to the type threaded. As a conse?
quence of this step, all threads under the threaded root now have
the type threaded and the threaded subtree is now fully usable. The
requirement to write "threaded" to each of these cgroups is somewhat
cumbersome, but allows for possible future extensions to the thread-
mode model.

The second way of creating a threaded subtree is as follows:

1. In an existing cgroup, z, that currently has the type domain, we (1)
enable one or more threaded controllers and (2) make a process a
member of z. (These two steps can be done in either order.) This
has the following consequences:

* The type of z becomes domain threaded.
* All of the descendant cgroups of x that were not already of type
threaded are converted to type domain invalid.

2. As before, we make the threaded subtree usable by writing the string
"threaded" to each of the domain invalid cgroups under y, in order
to convert them to the type threaded.

One of the consequences of the above pathways to creating a threaded

subtree is that the threaded root cgroup can be a parent only to

threaded (and domain invalid) cgroups. The threaded root cgroup can't

be a parent of a domain cgroups, and a threaded cgroup can't have a

sibling that is a domain cgroup.

Using a threaded subtree

Within a threaded subtree, threaded controllers can be enabled in each

subgroup whose type has been changed to threaded; upon doing so, the

corresponding controller interface files appear in the children of that
cgroup.

A process can be moved into a threaded subtree by writing its PID to

the cgroup.procs file in one of the cgroups inside the tree. This has Page 24/31

the effect of making all of the threads in the process members of the
corresponding cgroup and makes the process a member of the threaded
subtree. The threads of the process can then be spread across the
threaded subtree by writing their thread IDs (see gettid(2)) to the
cgroup.threads files in different cgroups inside the subtree. The
threads of a process must all reside in the same threaded subtree.

As with writing to cgroup.procs, some containment rules apply when

writing to the cgroup.threads file:

* The writer must have write permission on the cgroup.threads file in
the destination cgroup.

* The writer must have write permission on the cgroup.procs file in
the common ancestor of the source and destination cgroups. (In some
cases, the common ancestor may be the source or destination cgroup
itself.)

* The source and destination cgroups must be in the same threaded sub?
tree. (Outside a threaded subtree, an attempt to move a thread by
writing its thread ID to the cgroup.threads file in a different do?
main cgroup fails with the error EOPNOTSUPP.)

The cgroup.threads file is present in each cgroup (including domain

cgroups) and can be read in order to discover the set of threads that

is present in the cgroup. The set of thread IDs obtained when reading

this file is not guaranteed to be ordered or free of duplicates.

The cgroup.procs file in the threaded root shows the PIDs of all pro?

cesses that are members of the threaded subtree. The cgroup.procs

files in the other cgroups in the subtree are not readable.

Domain controllers can't be enabled in a threaded subtree; no con?

troller-interface files appear inside the cgroups underneath the

threaded root. From the point of view of a domain controller, threaded
subtrees are invisible: a multithreaded process inside a threaded sub?
tree appears to a domain controller as a process that resides in the
threaded root cgroup.

Within a threaded subtree, the "no internal processes" rule does not

apply: a cgroup can both contain member processes (or thread) and exer?

Page 25/31

cise controllers on child cgroups.

Rules for writing to cgroup.type and creating threaded subtrees

A number of rules apply when writing to the cgroup.type file:

* Only the string "threaded" may be written. In other words, the only
explicit transition that is possible is to convert a domain cgroup
to type threaded.

* The effect of writing "threaded" depends on the current value in
cgroup.type, as follows:

? domain or domain threaded: start the creation of a threaded sub?
tree (whose root is the parent of this cgroup) via the first of
the pathways described above;

? domain invalid: convert this cgroup (which is inside a threaded
subtree) to a usable (i.e., threaded) state;

? threaded: no effect (a "no-op").

* We can't write to a cgroup.type file if the parent's type is domain
invalid. In other words, the cgroups of a threaded subtree must be
converted to the threaded state in a top-down manner.

There are also some constraints that must be satisfied in order to cre?

ate a threaded subtree rooted at the cgroup x:

* There can be no member processes in the descendant cgroups of x.
(The cgroup x can itself have member processes.)

* No domain controllers may be enabled in x's cgroup.subtree_control
file.

If any of the above constraints is violated, then an attempt to write

"threaded" to a cgroup.type file fails with the error ENOTSUP.

The "domain threaded" cgroup type

According to the pathways described above, the type of a cgroup can

change to domain threaded in either of the following cases:

* The string "threaded" is written to a child cgroup.

* A threaded controller is enabled inside the cgroup and a process is
made a member of the cgroup.

A domain threaded cgroup, X, can revert to the type domain if the above

conditions no longer hold true?that is, if all threaded child cgroups

Page 26/31

of x are removed and either x no longer has threaded controllers en?

abled or no longer has member processes.

When a domain threaded cgroup x reverts to the type domain:

* All domain invalid descendants of x that are not in lower-level
threaded subtrees revert to the type domain.

* The root cgroups in any lower-level threaded subtrees revert to the
type domain threaded.

Exceptions for the root cgroup

The root cgroup of the v2 hierarchy is treated exceptionally: it can be

the parent of both domain and threaded cgroups. If the string

"threaded" is written to the cgroup.type file of one of the children of

the root cgroup, then

* The type of that cgroup becomes threaded.

* The type of any descendants of that cgroup that are not part of
lower-level threaded subtrees changes to domain invalid.

Note that in this case, there is no cgroup whose type becomes domain

threaded. (Notionally, the root cgroup can be considered as the

threaded root for the cgroup whose type was changed to threaded.)

The aim of this exceptional treatment for the root cgroup is to allow a

threaded cgroup that employs the cpu controller to be placed as high as

possible in the hierarchy, so as to minimize the (small) cost of

traversing the cgroup hierarchy.

The cgroups v2 "cpu” controller and realtime threads

As at Linux 4.19, the cgroups v2 cpu controller does not support con?

trol of realtime threads (specifically threads scheduled under any of

the policies SCHED_FIFO, SCHED_RR, described SCHED_DEADLINE; see

sched(7)). Therefore, the cpu controller can be enabled in the root

cgroup only if all realtime threads are in the root cgroup. (If there

are realtime threads in nonroot cgroups, then a write(2) of the string

"+cpu" to the cgroup.subtree_control file fails with the error EINVAL.)

On some systems, systemd(1) places certain realtime threads in nonroot

cgroups in the v2 hierarchy. On such systems, these threads must first

be moved to the root cgroup before the cpu controller can be enabled. Page 27/31

ERRORS

The following errors can occur for mount(2):

EBUSY An attempt to mount a cgroup version 1 filesystem specified nei?
ther the name= option (to mount a named hierarchy) nor a con?
troller name (or all).

NOTES

A child process created via fork(2) inherits its parent's cgroup mem?

berships. A process's cgroup memberships are preserved across ex?

ecve(2).

The clone3(2) CLONE_INTO_CGROUP flag can be used to create a child

process that begins its life in a different version 2 cgroup from the

parent process.

/proc files

/proc/cgroups (since Linux 2.6.24)

This file contains information about the controllers that are
compiled into the kernel. An example of the contents of this
file (reformatted for readability) is the following:

#subsys _name hierarchy num_cgroups enabled

cpuset 4 1 1
cpu 8 1 1
cpuacct 8 1 1
blkio 6 1 1
memory 3 1 1
devices 10 84 1
freezer 7 1 1
net cls 9 1 1
perf event 5 1 1
net_prio 9 1 1
hugetlb 0 1 0
pids 2 1 1

The fields in this file are, from left to right:
1. The name of the controller.

2. The unique ID of the cgroup hierarchy on which this con?

Page 28/31

troller is mounted. If multiple cgroups v1 controllers are
bound to the same hierarchy, then each will show the same hi?
erarchy ID in this field. The value in this field will be 0
if:

a) the controller is not mounted on a cgroups v1 hierarchy;

b) the controller is bound to the cgroups v2 single unified

hierarchy; or

c) the controller is disabled (see below).

3. The number of control groups in this hierarchy using this
controller.

4. This field contains the value 1 if this controller is en?
abled, or 0if it has been disabled (via the cgroup_disable
kernel command-line boot parameter).

/proc/[pid]/cgroup (since Linux 2.6.24)

This file describes control groups to which the process with the

corresponding PID belongs. The displayed information differs

for cgroups version 1 and version 2 hierarchies.

For each cgroup hierarchy of which the process is a member,

there is one entry containing three colon-separated fields:
hierarchy-ID:controller-list:cgroup-path

For example:
5:cpuacct,cpu,cpuset:/daemons

The colon-separated fields are, from left to right:

1. For cgroups version 1 hierarchies, this field contains a
unique hierarchy ID number that can be matched to a hierarchy
ID in /proc/cgroups. For the cgroups version 2 hierarchy,
this field contains the value 0.

2. For cgroups version 1 hierarchies, this field contains a
comma-separated list of the controllers bound to the hierar?
chy. For the cgroups version 2 hierarchy, this field is
empty.

3. This field contains the pathname of the control group in the

hierarchy to which the process belongs. This pathname is

Page 29/31

relative to the mount point of the hierarchy.
/sys/kernel/cgroup files
/sys/kernel/cgroup/delegate (since Linux 4.15)
This file exports a list of the cgroups v2 files (one per line)
that are delegatable (i.e., whose ownership should be changed to
the user ID of the delegatee). In the future, the set of dele?
gatable files may change or grow, and this file provides a way
for the kernel to inform user-space applications of which files
must be delegated. As at Linux 4.15, one sees the following
when inspecting this file:
$ cat /sys/kernel/cgroup/delegate
cgroup.procs
cgroup.subtree_control
cgroup.threads
/sys/kernel/cgroup/features (since Linux 4.15)
Over time, the set of cgroups v2 features that are provided by
the kernel may change or grow, or some features may not be en?
abled by default. This file provides a way for user-space ap?
plications to discover what features the running kernel supports
and has enabled. Features are listed one per line:
$ cat /sys/kernel/cgroup/features
nsdelegate
memory_localevents
The entries that can appear in this file are:
memory_localevents (since Linux 5.2)
The kernel supports the memory_localevents mount option.
nsdelegate (since Linux 4.15)
The kernel supports the nsdelegate mount option.
SEE ALSO
prlimit(1), systemd(1), systemd-cgls(1), systemd-cgtop(1), clone(2),
ioprio_set(2), perf_event_open(2), setrlimit(2), cgroup_namespaces(7),
cpuset(7), namespaces(7), sched(7), user_namespaces(7)

The kernel source file Documentation/admin-guide/cgroup-v2.rst.

Page 30/31

COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A
description of the project, information about reporting bugs, and the
latest version of this page, can be found at
https://www.kernel.org/doc/man-pages/.

Linux 2020-08-13 CGROUPS(7)

Page 31/31

