r“‘ .

University

FPDF Library

PDF generator

RedHat
Enterprise Linux

Manual Pages

A

Full credit is given to the above companies including the 0S
that this PDF file was generated!

Red Hat Enterprise Linux Release 9.2 Manual Pages on 'containers-transports.5' command
$ man containers-transports.5
CONTAINERS-TRANSPORTS(5) Man CONTAINERS-TRANSPORTS(5)
Valentin Rothberg April 2019
NAME
containers-transports - description of supported transports for copying
and storing container images
DESCRIPTION
Tools which use the containers/image library, including skopeo(1),
buildah(1), podman(1), all share a common syntax for referring to con?
tainer images in various locations. The general form of the syntax is
transport:details, where details are dependent on the specified trans?
port, which are documented below.
The semantics of the image names ultimately depend on the environment
where they are evaluated. For example: if evaluated on a remote server,
image names might refer to paths on that server; relative paths are
relative to the current directory of the image consumer.
containers-storage:[[storage-specifier]]{image-id|docker-reference[@image-
id]}
An image located in a local containers storage. The format of docker-
reference is described in detail in the docker transport.
The storage-specifier allows for referencing storage locations on the
file system and has the format [[driver@]root[+run-root][:options]]
where the optional driver refers to the storage driver (e.g., overlay

or btrfs) and where root is an absolute path to the storage's root di? Page 1/4

rectory. The optional run-root can be used to specify the run direc?
tory of the storage where all temporary writable content is stored.
The optional options are a comma-separated list of driver-specific op?
tions. Please refer to containers-storage.conf(5) for further informa?
tion on the drivers and supported options.
dir:path
An existing local directory path storing the manifest, layer tarballs
and signatures as individual files. This is a non-standardized format,
primarily useful for debugging or noninvasive container inspection.
docker://docker-reference
An image in a registry implementing the "Docker Registry HTTP API V2",
By default, uses the authorization state in $XDG_RUNTIME_DIR/contain?
ers/auth.json, which is set using podman-login(1). If the authoriza?
tion state is not found there, $HOME/.docker/config.json is checked,
which is set using docker-login(1). The containers-registries.conf(5)
further allows for configuring various settings of a registry.
Note that a docker-reference has the following format: name[:tag|@di?
gest]. While the docker transport does not support both a tag and a
digest at the same time some formats like containers-storage do. Di?
gests can also be used in an image destination as long as the manifest
matches the provided digest. The digest of images can be explored with
skopeo-inspect(1). If name does not contain a slash, it is treated as
docker.io/library/name. Otherwise, the component before the first
slash is checked if itis recognized as a hostname[:port] (i.e., it
contains either a . or a :, or the component is exactly localhost). If
the first component of name is not recognized as a hostname[:port],
name is treated as docker.io/name.
docker-archive:path[:{docker-reference|@source-index}]
An image is stored in the docker-save(1) formatted file. docker-refer?
ence must not contain a digest. Alternatively, for reading archives,
@source-index is a zero-based index in archive manifest (to access un?
tagged images). If neither docker-reference nor @_source_index is

specified when reading an archive, the archive must contain exactly one Page 2/4

image.
It is further possible to copy data to stdin by specifying docker-ar?
chive:/dev/stdin but note that the used file must be seekable.
docker-daemon:docker-reference|algo:digest
An image stored in the docker daemon’s internal storage. The image
must be specified as a docker-reference or in an alternative algo:di?
gest format when being used as an image source. The algo:digest refers
to the image ID reported by docker-inspect(1).
oci:path[:reference]
An image compliant with the "Open Container Image Layout Specification"
at path. Using a reference is optional and allows for storing multiple
images at the same path.
oci-archive:path[:reference]
An image compliant with the "Open Container Image Layout Specification"
stored as a tar(1) archive at path.
ostree:docker-reference[@/absolute/repo/path]
An image in the local ostree(1) repository. /absolute/repo/path de?
faults to /ostree/repo.
Examples
The following examples demonstrate how some of the containers trans?
ports can be used. The examples use skopeo-copy(1) for copying con?
tainer images.

Copying an image from one registry to another:

$ skopeo copy docker://docker.io/library/alpine:latest docker://localhost:5000/alpine:latest

Copying an image from a running Docker daemon to a directory in the OCI
layout:

$ mkdir alpine-oci

$ skopeo copy docker-daemon:alpine:latest oci:alpine-oci

$ tree alpine-oci

test-oci/

??? blobs

??? ?7? 83ef92b73cf4595aa7fe214ec6747228283d585f373d8f6bc08d66bebab531b7

Page 3/4

??? 2?77 9a6259e911dcd0a53535a25a9760ad8f2eded3528e0ad5604c4488624795cecc
??? 7?7 ff8df268d29ccbe81cdf0al73076dcfbbeadbb2b6dfldd26766a73ch7b4ae6f7
??? index.json
??? oci-layout
2 directories, 5 files
Copying an image from a registry to the local storage:
$ skopeo copy docker://docker.io/library/alpine:latest containers-storage:alpine:latest
SEE ALSO
docker-login(1), docker-save(1), ostree(1), podman-login(1), skopeo-
copy(1), skopeo-inspect(1), tar(1), container-registries.conf(5), con?
tainers-storage.conf(5)
AUTHORS
Miloslav Trma? mitr@redhat.com ?mailto:mitr@redhat.com? Valentin Roth?
berg rothberg@redhat.com ?mailto:rothberg@redhat.com?

Transports Containers CONTAINERS-TRANSPORTS(5)

Page 4/4

