r*‘ ,

University

FPDF Library

RedHat PR ot
Enterprise Linux

Manual Pages

A

B

Full credit is given to the above companies including the 0S
that this PDF file was generated!

Red Hat Enterprise Linux Release 9.2 Manual Pages on 'ctime.3' command

$ man ctime.3
CTIME(3) Linux Programmer's Manual CTIME(3)
NAME

asctime, ctime, gmtime, localtime, mktime, asctime_r, ctime_r, gm?

time_r, localtime_r - transform date and time to broken-down time or

ASCII
SYNOPSIS

#include <time.h>

char *asctime(const struct tm *tm);

char *asctime_r(const struct tm *tm, char *buf);

char *ctime(const time_t *timep);

char *ctime_r(const time_t *timep, char *buf);

struct tm *gmtime(const time_t *timep);

struct tm *gmtime_r(const time_t *timep, struct tm *result);

struct tm *localtime(const time_t *timep);

struct tm *localtime_r(const time_t *timep, struct tm *result);

time_t mktime(struct tm *tm);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):
asctime_r(), ctime_r(), gmtime_r(), localtime_r():
_POSIX_C_SOURCE
[| 7* Glibc versions <= 2.19: */ BSD_SOURCE || _SVID_SOURCE

DESCRIPTION

The ctime(), gmtime(), and localtime() functions all take an argument

of data type time_t, which represents calendar time. When interpreted Page 1/6

as an absolute time value, it represents the number of seconds elapsed

since the Epoch, 1970-01-01 00:00:00 +0000 (UTC).

The asctime() and mktime() functions both take an argument representing

broken-down time, which is a representation separated into year, month,

day, and so on.
Broken-down time is stored in the structure tm, which is defined in
<time.h> as follows:
struct tm {
inttm_sec; /* Seconds (0-60) */
inttm_min; /* Minutes (0-59) */
inttm_hour; /* Hours (0-23) */
inttm_mday; /* Day of the month (1-31) */
inttm_mon; /* Month (0-11) */
inttm_year; /* Year - 1900 */
inttm_wday; /* Day of the week (0-6, Sunday = 0) */
inttm_yday; /* Day in the year (0-365, 1 Jan = 0) */
int tm_isdst; /* Daylight saving time */
h

The members of the tm structure are:

tm_sec The number of seconds after the minute, normally in the range

0 to 59, but can be up to 60 to allow for leap seconds.
tm_min The number of minutes after the hour, in the range 0 to 59.
tm_hour The number of hours past midnight, in the range 0 to 23.

tm_mday The day of the month, in the range 1 to 31.

tm_mon The number of months since January, in the range 0 to 11.

tm_year The number of years since 1900.

tm_wday The number of days since Sunday, in the range 0 to 6.

tm_yday The number of days since January 1, in the range 0 to 365.

tm_isdst A flag that indicates whether daylight saving time is in ef?
fect at the time described. The value is positive if day?
light saving time is in effect, zero if it is not, and nega?
tive if the information is not available.

The call ctime(t) is equivalent to asctime(localtime(t)). It converts

Page 2/6

the calendar time t into a null-terminated string of the form

"Wed Jun 30 21:49:08 1993\n"
The abbreviations for the days of the week are "Sun", "Mon", "Tue",
"Wed", "Thu", "Fri", and "Sat". The abbreviations for the months are
"Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct",
"Nov", and "Dec". The return value points to a statically allocated
string which might be overwritten by subsequent calls to any of the
date and time functions. The function also sets the external variables
tzname, timezone, and daylight (see tzset(3)) with information about
the current timezone. The reentrant version ctime_r() does the same,
but stores the string in a user-supplied buffer which should have room
for at least 26 bytes. It need not set tzname, timezone, and daylight.
The gmtime() function converts the calendar time timep to broken-down
time representation, expressed in Coordinated Universal Time (UTC). It
may return NULL when the year does not fit into an integer. The return
value points to a statically allocated struct which might be overwrit?
ten by subsequent calls to any of the date and time functions. The gm?
time_r() function does the same, but stores the data in a user-supplied
struct.
The localtime() function converts the calendar time timep to broken-
down time representation, expressed relative to the user's specified
timezone. The function acts as if it called tzset(3) and sets the ex?

ternal variables tzname with information about the current timezone,

timezone with the difference between Coordinated Universal Time (UTC)

and local standard time in seconds, and daylight to a nonzero value if
daylight savings time rules apply during some part of the year. The
return value points to a statically allocated struct which might be
overwritten by subsequent calls to any of the date and time functions.
The localtime_r() function does the same, but stores the data in a
user-supplied struct. It need not set tzname, timezone, and daylight.
The asctime() function converts the broken-down time value tm into a
null-terminated string with the same format as ctime(). The return

value points to a statically allocated string which might be overwrit?

Page 3/6

ten by subsequent calls to any of the date and time functions. The as?
ctime_r() function does the same, but stores the string in a user-sup?
plied buffer which should have room for at least 26 bytes.
The mktime() function converts a broken-down time structure, expressed
as local time, to calendar time representation. The function ignores
the values supplied by the caller in the tm_wday and tm_yday fields.
The value specified in the tm_isdst field informs mktime() whether or
not daylight saving time (DST) is in effect for the time supplied in
the tm structure: a positive value means DST is in effect; zero means
that DST is not in effect; and a negative value means that mktime()
should (use timezone information and system databases to) attempt to
determine whether DST is in effect at the specified time.
The mktime() function modifies the fields of the tm structure as fol?
lows: tm_wday and tm_yday are set to values determined from the con?
tents of the other fields; if structure members are outside their valid
interval, they will be normalized (so that, for example, 40 October is
changed into 9 November); tm_isdst is set (regardless of its initial
value) to a positive value or to 0, respectively, to indicate whether
DST is or is not in effect at the specified time. Calling mktime()
also sets the external variable tzname with information about the cur?
rent timezone.
If the specified broken-down time cannot be represented as calendar
time (seconds since the Epoch), mktime() returns (time_t) -1 and does
not alter the members of the broken-down time structure.

RETURN VALUE
On success, gmtime() and localtime() return a pointer to a struct tm.
On success, gmtime_r() and localtime_r() return the address of the
structure pointed to by result.
On success, asctime() and ctime() return a pointer to a string.
On success, asctime_r() and ctime_r() return a pointer to the string
pointed to by buf.
On success, mktime() returns the calendar time (seconds since the

Epoch), expressed as a value of type time_t. Page 4/6

On error, mktime() returns the value (time_t) -1. The remaining func?
tions return NULL on error. On error, errno is set to indicate the
cause of the error.
ERRORS
EOVERFLOW
The result cannot be represented.
ATTRIBUTES
For an explanation of the terms used in this section, see at?

tributes(7).

PP ???7?0?7?2??2??7???7???7?7??7?277?2??727?77???7?2?7?7?7??7?7?7?7?7?77?7

?Interface ? Attribute ? Value ?

PPV 7???7??77?7?77?7?77?7777

?asctime() ? Thread safety ? MT-Unsafe race:asctime locale ?

PPV 7???7?7?7?7?7??7?7?77?7?777

?asctime_r() ? Thread safety ? MT-Safe locale ?

PP 7???7??77?7?77?7?77?7?777

?2ctime() ? Thread safety ? MT-Unsafe race:tmbuf ?

? ? ? race:asctime env locale ?

PP 7???7??2?7?7?7?7?7?7?7?7?77?7

?ctime_r(), gm? ? Thread safety ? MT-Safe env locale ?
?time_r(), lo? ? ? ?
?caltime_r(), ? ? ?
?mktime() ? ? ?

PPV 7?7?7?72?72?7?7??77?77?7

?gmtime(), lo? ? Thread safety ? MT-Unsafe race:tmbuf env locale ?
?caltime() ? ? ?

PP ???7?27??7?7??7?7?7?7?7777

CONFORMING TO
POSIX.1-2001. C89 and C99 specify asctime(), ctime(), gmtime(), local?
time(), and mktime(). POSIX.1-2008 marks asctime(), asctime_r(),
ctime(), and ctime_r() as obsolete, recommending the use of strftime(3)
instead.

NOTES Page 5/6

The four functions asctime(), ctime(), gmtime(), and localtime() return
a pointer to static data and hence are not thread-safe. The thread-
safe versions, asctime_r(), ctime_r(), gmtime_r(), and localtime_r(),
are specified by SUSv2.
POSIX.1-2001 says: "The asctime(), ctime(), gmtime(), and localtime()
functions shall return values in one of two static objects: a broken-
down time structure and an array of type char. Execution of any of the
functions may overwrite the information returned in either of these ob?
jects by any of the other functions." This can occur in the glibc im?
plementation.
In many implementations, including glibc, a 0 in tm_mday is interpreted
as meaning the last day of the preceding month.
The glibc version of struct tm has additional fields
const char *tm_zone; /* Timezone abbreviation */

defined when _BSD_SOURCE was set before including <time.h>. Thisis a
BSD extension, present in 4.3BSD-Reno.
According to POSIX.1-2001, localtime() is required to behave as though
tzset(3) was called, while localtime_r() does not have this require?
ment. For portable code, tzset(3) should be called before local?
time_r().

SEE ALSO
date(1), gettimeofday(2), time(2), utime(2), clock(3), difftime(3),
strftime(3), strptime(3), timegm(3), tzset(3), time(7)

COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A
description of the project, information about reporting bugs, and the
latest version of this page, can be found at
https://www.kernel.org/doc/man-pages/.

2020-12-21 CTIME(3)

Page 6/6

