
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'dbus-broker.1' command

$ man dbus-broker.1

DBUS-BROKER(1) User Commands DBUS-BROKER(1)

NAME

 dbus-broker - D-Bus message broker

SYNOPSIS

 dbus-broker [OPTIONS]

 dbus-broker --version

 dbus-broker --help

DESCRIPTION

 dbus-broker is an implementation of the D-Bus Message Bus Specification

 [1]. Each instance provides a single, unique message bus that clients

 can connect to, and send messages over. The broker takes care of mes?

 sage mediation, access control, subscriptions, and bus control, accord?

 ing to the D-Bus specification.

 dbus-broker is a pure implementation, meaning that it only implements

 the message mediation. It needs a controlling process that performs the

 bus setup and all external communication. dbus-broker-launch(1) is such

 a controller aiming at perfect compatibility to dbus-daemon(1), the

 D-Bus Reference Implementation. See dbus-broker-launch(1) for details

 how to spawn a message bus.

 This man-page documents the interface between dbus-broker and its con?

 troller (e.g., dbus-broker-launch(1)).

OPTIONS

 The following command-line options are supported. If an option is Page 1/7

 passed, which is not listed here, the broker will deny startup and exit

 with an error.

 -h, --help

 print usage information and exit immediately

 --version

 print build-version and exit immediately

 --audit

 enable logging to the linux audit subsystem (no-op if audit sup?

 port was not compiled in; Default: off)

 --controller=FD

 use the inherited file-descriptor with the given number as the

 controlling socket (see CONTROLLER section; this option is

 mandatory)

 --log FD

 use the inherited file-descriptor with the given number to ac?

 cess the system log (see LOGGING section; Default: no logging)

 --machine-id=ID

 set the machine-id to be advertised by the broker via the

 org.freedesktop.DBus interface (this option is mandatory and

 usually sourced from /etc/machine-id)

 --max-bytes=BYTES

 maximum number of bytes each user may allocate in the broker

 (Default: 16 MiB)

 --max-fds=FDS

 maximum number of file descriptors each user may allocate in the

 broker (Default: 64)

 --max-matches=MATCHES

 maximum number of match rules each user may allocate in the bro?

 ker (Default: 16k)

 --max-objects=OBJECTS

 maximum total number of names, peers, pending replies, etc each

 user may allocate in the broker (Default: 16k)

CONTROLLER Page 2/7

 Every instance of dbus-broker inherits a unix(7) socket from its parent

 process. This socket must be specified via the --controller option. The

 broker uses this socket to accept control commands from its parent

 process (or from whomever owns the other side of this socket, also

 called The Controller). This socket uses normal D-Bus P2P communica?

 tion. The interfaces provided on this socket are described in the API

 section.

 By default, a broker instance is idle. That is, after forking and exe?

 cuting a broker, it starts with an empty list of bus-sockets to manage,

 as well as no way for clients to connect to it. The controller must use

 the controller interface to create listener sockets, specify the bus

 policy, create activatable names, and react to bus events.

 The dbus-broker process never accesses any external resources other

 than those passed in either via the command-line or the controller in?

 terfaces. That is, no file-system access, no nss(5) calls, no external

 process communication, is performed by the broker. On the contrary, the

 broker never accesses any resources but the sockets provided to it by

 the controller. This is guaranteed by the implementation. At the same

 time, this implies that the controller is required to perform all ex?

 ternal resource acquisitions and communication on behalf of the broker

 (in case this is needed).

LOGGING

 If a logging FD is provided via the --log command-line option, the bro?

 ker will log some information through this FD. Two different log-types

 are supported:

 1. If the FD is a unix(7) SOCK_STREAM socket, information is logged

 as human-readable line-based chunks.

 2. If the FD is a unix(7) SOCK_DGRAM socket, information is logged

 as key/value based annotated data blocks. The format is compati?

 ble to the format used by the systemd-journal (though it is not

 dependent on systemd). This key/value based logging is a lot

 more verbose as the stream based logging. A lot of metadata is

 provided as separate keys, allowing precise tracing and interpre? Page 3/7

 tation of the logged data.

 The broker has strict rules when it logs data. It logs during startup

 and shutdown, one message each to provide information on its setup and

 environment. At runtime, the broker only ever logs in unexpected situ?

 ations. That is, every message the broker logs at runtime was triggered

 by a malfunctioning client. If a system is properly set up, no runtime

 log-message will be triggered.

 The situations where the broker logs are:

 1. During startup and shutdown, the broker submits a short message

 including metadata about its controller, environment, and setup.

 2. Whenever a client-request is denied by the policy, a message is

 logged including the affected client and policies.

 3. Whenever a client exceeds its resource quota, a message is logged

 with information on the client.

API

 The following interfaces are implemented by the broker on the respec?

 tive nodes. The controller is free to call these at any time. The con?

 troller connection is considered trusted. No resource accounting, nor

 access control is performed.

 The controller itself is also required to implement interfaces to be

 used by the broker. See the section below for a list of interfaces on

 the controller.

 node /org/bus1/DBus/Broker {

 interface org.bus1.DBus.Broker {

 # Create new activatable name @name, accounted on user @uid. The name

 # will be exposed by the controller as @path (which must fit the

 # template /org/bus1/DBus/Name/%).

 method AddName(o path, s name, u uid) -> ()

 # Add a listener socket to this bus. The listener socket must be

 # ready in listening mode and specified as @socket. As soon as this

 # call returns, incoming client connection attempts will be served

 # on this socket.

 # The listener is exposed by the controller as @path (which must fit Page 4/7

 # the template /org/bus1/DBus/Listener/%).

 # The policy for all clients connecting through this socket is

 # provided as @policy. See org.bus1.DBus.Listener.SetPolicy() for

 # details.

 method AddListener(o path, h socket, v policy) -> ()

 # This signal is raised according to client-requests of

 # org.freedesktop.DBus.UpdateActivationEnvironment().

 signal SetActivationEnvironment(a{ss} environment)

 }

 }

 node /org/bus1/DBus/Listener/% {

 interface org.bus1.DBus.Listener {

 # Release this listener. It will immediately be removed by the broker

 # and no more connections will be served on it. All clients connected

 # through this listener are forcefully disconnected.

 method Release() -> ()

 # Change the policy on this listener socket to @policy. The syntax of

 # the policy is still subject to change and not stable, yet.

 method SetPolicy(v policy) -> ()

 }

 }

 node /org/bus1/DBus/Name/% {

 interface org.bus1.DBus.Name {

 # Release this activatable name. It will be removed with immediate

 # effect by the broker. Note that the name is still valid to be

 # acquired by clients, though no activation-features will be

 # supported on this name.

 method Release() -> ()

 # Reset the activation state of this name. Any pending activation

 # requests are canceled. The call requires a serial number to be

 # passed along. This must be the serial number received by the last

 # activation even on this name. Calls for other serial numbers are

 # silently ignored and considered stale. Page 5/7

 method Reset(t serial) -> ()

 # This signal is sent whenever a client requests activation of this

 # name. Note that multiple activation requests are coalesced by the

 # broker. The controller can cancel outstanding requests via the

 # Reset() method.

 # The broker sends a serial number with the event. This number

 # represents the activation request and must be used when reacting

 # to the request with methods like Reset(). The serial number is

 # unique for each event, and is never reused. A serial number of 0

 # is never sent and considered invalid.

 signal Activate(t serial)

 }

 }

 The controller itself is required to implement the following interfaces

 on the given nodes. These interfaces are called by the broker to imple?

 ment some parts of the driver-interface as defined by the D-Bus speci?

 fication.

 Note that all method-calls performed by the broker are always fully

 asynchronous. That is, regardless how long it takes to serve the re?

 quest, the broker is still fully operational and might even send fur?

 ther requests to the controller.

 A controller is free to implement these calls in a blocking fashion.

 However, it is up to the controller to make sure not to perform block?

 ing recursive calls back into the broker (via any means).

 node /org/bus1/DBus/Controller {

 interface org.bus1.DBus.Controller {

 # This function is called for each client-request of

 # org.freedesktop.DBus.ReloadConfig().

 method ReloadConfig() -> ()

 }

 }

SEE ALSO

 dbus-broker-launch(1) dbus-daemon(1) Page 6/7

NOTES

 [1] D-Bus Specification:

 https://dbus.freedesktop.org/doc/dbus-specification.html

 DBUS-BROKER(1)

Page 7/7

