
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'exit.3' command

$ man exit.3

EXIT(3) Linux Programmer's Manual EXIT(3)

NAME

 exit - cause normal process termination

SYNOPSIS

 #include <stdlib.h>

 void exit(int status);

DESCRIPTION

 The exit() function causes normal process termination and the least

 significant byte of status (i.e., status & 0xFF) is returned to the

 parent (see wait(2)).

 All functions registered with atexit(3) and on_exit(3) are called, in

 the reverse order of their registration. (It is possible for one of

 these functions to use atexit(3) or on_exit(3) to register an addi?

 tional function to be executed during exit processing; the new regis?

 tration is added to the front of the list of functions that remain to

 be called.) If one of these functions does not return (e.g., it calls

 _exit(2), or kills itself with a signal), then none of the remaining

 functions is called, and further exit processing (in particular, flush?

 ing of stdio(3) streams) is abandoned. If a function has been regis?

 tered multiple times using atexit(3) or on_exit(3), then it is called

 as many times as it was registered.

 All open stdio(3) streams are flushed and closed. Files created by

 tmpfile(3) are removed. Page 1/4

 The C standard specifies two constants, EXIT_SUCCESS and EXIT_FAILURE,

 that may be passed to exit() to indicate successful or unsuccessful

 termination, respectively.

RETURN VALUE

 The exit() function does not return.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?exit() ? Thread safety ? MT-Unsafe race:exit ?

 ??

 The exit() function uses a global variable that is not protected, so it

 is not thread-safe.

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, C89, C99, SVr4, 4.3BSD.

NOTES

 The behavior is undefined if one of the functions registered using

 atexit(3) and on_exit(3) calls either exit() or longjmp(3). Note that

 a call to execve(2) removes registrations created using atexit(3) and

 on_exit(3).

 The use of EXIT_SUCCESS and EXIT_FAILURE is slightly more portable (to

 non-UNIX environments) than the use of 0 and some nonzero value like 1

 or -1. In particular, VMS uses a different convention.

 BSD has attempted to standardize exit codes (which some C libraries

 such as the GNU C library have also adopted); see the file <sysex?

 its.h>.

 After exit(), the exit status must be transmitted to the parent

 process. There are three cases:

 ? If the parent has set SA_NOCLDWAIT, or has set the SIGCHLD handler

 to SIG_IGN, the status is discarded and the child dies immediately.

 ? If the parent was waiting on the child, it is notified of the exit Page 2/4

 status and the child dies immediately.

 ? Otherwise, the child becomes a "zombie" process: most of the process

 resources are recycled, but a slot containing minimal information

 about the child process (termination status, resource usage statis?

 tics) is retained in process table. This allows the parent to sub?

 sequently use waitpid(2) (or similar) to learn the termination sta?

 tus of the child; at that point the zombie process slot is released.

 If the implementation supports the SIGCHLD signal, this signal is sent

 to the parent. If the parent has set SA_NOCLDWAIT, it is undefined

 whether a SIGCHLD signal is sent.

 Signals sent to other processes

 If the exiting process is a session leader and its controlling terminal

 is the controlling terminal of the session, then each process in the

 foreground process group of this controlling terminal is sent a SIGHUP

 signal, and the terminal is disassociated from this session, allowing

 it to be acquired by a new controlling process.

 If the exit of the process causes a process group to become orphaned,

 and if any member of the newly orphaned process group is stopped, then

 a SIGHUP signal followed by a SIGCONT signal will be sent to each

 process in this process group. See setpgid(2) for an explanation of

 orphaned process groups.

 Except in the above cases, where the signalled processes may be chil?

 dren of the terminating process, termination of a process does not in

 general cause a signal to be sent to children of that process. How?

 ever, a process can use the prctl(2) PR_SET_PDEATHSIG operation to ar?

 range that it receives a signal if its parent terminates.

SEE ALSO

 _exit(2), get_robust_list(2), setpgid(2), wait(2), atexit(3),

 on_exit(3), tmpfile(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at Page 3/4

 https://www.kernel.org/doc/man-pages/.

Linux 2020-02-09 EXIT(3)

Page 4/4

