
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'fanotify.7' command

$ man fanotify.7

FANOTIFY(7) Linux Programmer's Manual FANOTIFY(7)

NAME

 fanotify - monitoring filesystem events

DESCRIPTION

 The fanotify API provides notification and interception of filesystem

 events. Use cases include virus scanning and hierarchical storage man?

 agement. In the original fanotify API, only a limited set of events

 was supported. In particular, there was no support for create, delete,

 and move events. The support for those events was added in Linux 5.1.

 (See inotify(7) for details of an API that did notify those events pre

 Linux 5.1.)

 Additional capabilities compared to the inotify(7) API include the

 ability to monitor all of the objects in a mounted filesystem, the

 ability to make access permission decisions, and the possibility to

 read or modify files before access by other applications.

 The following system calls are used with this API: fanotify_init(2),

 fanotify_mark(2), read(2), write(2), and close(2).

 fanotify_init(), fanotify_mark(), and notification groups

 The fanotify_init(2) system call creates and initializes an fanotify

 notification group and returns a file descriptor referring to it.

 An fanotify notification group is a kernel-internal object that holds a

 list of files, directories, filesystems, and mount points for which

 events shall be created. Page 1/23

 For each entry in an fanotify notification group, two bit masks exist:

 the mark mask and the ignore mask. The mark mask defines file activi?

 ties for which an event shall be created. The ignore mask defines ac?

 tivities for which no event shall be generated. Having these two types

 of masks permits a filesystem, mount point, or directory to be marked

 for receiving events, while at the same time ignoring events for spe?

 cific objects under a mount point or directory.

 The fanotify_mark(2) system call adds a file, directory, filesystem or

 mount point to a notification group and specifies which events shall be

 reported (or ignored), or removes or modifies such an entry.

 A possible usage of the ignore mask is for a file cache. Events of in?

 terest for a file cache are modification of a file and closing of the

 same. Hence, the cached directory or mount point is to be marked to

 receive these events. After receiving the first event informing that a

 file has been modified, the corresponding cache entry will be invali?

 dated. No further modification events for this file are of interest

 until the file is closed. Hence, the modify event can be added to the

 ignore mask. Upon receiving the close event, the modify event can be

 removed from the ignore mask and the file cache entry can be updated.

 The entries in the fanotify notification groups refer to files and di?

 rectories via their inode number and to mounts via their mount ID. If

 files or directories are renamed or moved within the same mount, the

 respective entries survive. If files or directories are deleted or

 moved to another mount or if filesystems or mounts are unmounted, the

 corresponding entries are deleted.

 The event queue

 As events occur on the filesystem objects monitored by a notification

 group, the fanotify system generates events that are collected in a

 queue. These events can then be read (using read(2) or similar) from

 the fanotify file descriptor returned by fanotify_init(2).

 Two types of events are generated: notification events and permission

 events. Notification events are merely informative and require no ac?

 tion to be taken by the receiving application with one exception: if a Page 2/23

 valid file descriptor is provided within a generic event, the file de?

 scriptor must be closed. Permission events are requests to the receiv?

 ing application to decide whether permission for a file access shall be

 granted. For these events, the recipient must write a response which

 decides whether access is granted or not.

 An event is removed from the event queue of the fanotify group when it

 has been read. Permission events that have been read are kept in an

 internal list of the fanotify group until either a permission decision

 has been taken by writing to the fanotify file descriptor or the fan?

 otify file descriptor is closed.

 Reading fanotify events

 Calling read(2) for the file descriptor returned by fanotify_init(2)

 blocks (if the flag FAN_NONBLOCK is not specified in the call to fan?

 otify_init(2)) until either a file event occurs or the call is inter?

 rupted by a signal (see signal(7)).

 The use of one of the flags FAN_REPORT_FID, FAN_REPORT_DIR_FID in fan?

 otify_init(2) influences what data structures are returned to the event

 listener for each event. Events reported to a group initialized with

 one of these flags will use file handles to identify filesystem objects

 instead of file descriptors.

 After a successful

 read(2), the read buffer contains one or more of the following

 structures:

 struct fanotify_event_metadata {

 __u32 event_len;

 __u8 vers;

 __u8 reserved;

 __u16 metadata_len;

 __aligned_u64 mask;

 __s32 fd;

 __s32 pid;

 };

 In case of an fanotify group that identifies filesystem objects by file Page 3/23

 handles, you should also expect to receive one or more additional in?

 formation records of the structure detailed below following the generic

 fanotify_event_metadata structure within the read buffer:

 struct fanotify_event_info_header {

 __u8 info_type;

 __u8 pad;

 __u16 len;

 };

 struct fanotify_event_info_fid {

 struct fanotify_event_info_header hdr;

 __kernel_fsid_t fsid;

 unsigned char file_handle[0];

 };

 For performance reasons, it is recommended to use a large buffer size

 (for example, 4096 bytes), so that multiple events can be retrieved by

 a single read(2).

 The return value of read(2) is the number of bytes placed in the buf?

 fer, or -1 in case of an error (but see BUGS).

 The fields of the fanotify_event_metadata structure are as follows:

 event_len

 This is the length of the data for the current event and the

 offset to the next event in the buffer. Unless the group iden?

 tifies filesystem objects by file handles, the value of

 event_len is always FAN_EVENT_METADATA_LEN. For a group that

 identifies filesystem objects by file handles, event_len also

 includes the variable length file identifier records.

 vers This field holds a version number for the structure. It must be

 compared to FANOTIFY_METADATA_VERSION to verify that the struc?

 tures returned at run time match the structures defined at com?

 pile time. In case of a mismatch, the application should aban?

 don trying to use the fanotify file descriptor.

 reserved

 This field is not used. Page 4/23

 metadata_len

 This is the length of the structure. The field was introduced

 to facilitate the implementation of optional headers per event

 type. No such optional headers exist in the current implementa?

 tion.

 mask This is a bit mask describing the event (see below).

 fd This is an open file descriptor for the object being accessed,

 or FAN_NOFD if a queue overflow occurred. With an fanotify

 group that identifies filesystem objects by file handles, appli?

 cations should expect this value to be set to FAN_NOFD for each

 event that is received. The file descriptor can be used to ac?

 cess the contents of the monitored file or directory. The read?

 ing application is responsible for closing this file descriptor.

 When calling fanotify_init(2), the caller may specify (via the

 event_f_flags argument) various file status flags that are to be

 set on the open file description that corresponds to this file

 descriptor. In addition, the (kernel-internal) FMODE_NONOTIFY

 file status flag is set on the open file description. This flag

 suppresses fanotify event generation. Hence, when the receiver

 of the fanotify event accesses the notified file or directory

 using this file descriptor, no additional events will be cre?

 ated.

 pid If flag FAN_REPORT_TID was set in fanotify_init(2), this is the

 TID of the thread that caused the event. Otherwise, this the

 PID of the process that caused the event.

 A program listening to fanotify events can compare this PID to the PID

 returned by getpid(2), to determine whether the event is caused by the

 listener itself, or is due to a file access by another process.

 The bit mask in mask indicates which events have occurred for a single

 filesystem object. Multiple bits may be set in this mask, if more than

 one event occurred for the monitored filesystem object. In particular,

 consecutive events for the same filesystem object and originating from

 the same process may be merged into a single event, with the exception Page 5/23

 that two permission events are never merged into one queue entry.

 The bits that may appear in mask are as follows:

 FAN_ACCESS

 A file or a directory (but see BUGS) was accessed (read).

 FAN_OPEN

 A file or a directory was opened.

 FAN_OPEN_EXEC

 A file was opened with the intent to be executed. See NOTES in

 fanotify_mark(2) for additional details.

 FAN_ATTRIB

 A file or directory metadata was changed.

 FAN_CREATE

 A child file or directory was created in a watched parent.

 FAN_DELETE

 A child file or directory was deleted in a watched parent.

 FAN_DELETE_SELF

 A watched file or directory was deleted.

 FAN_MOVED_FROM

 A file or directory has been moved from a watched parent direc?

 tory.

 FAN_MOVED_TO

 A file or directory has been moved to a watched parent direc?

 tory.

 FAN_MOVE_SELF

 A watched file or directory was moved.

 FAN_MODIFY

 A file was modified.

 FAN_CLOSE_WRITE

 A file that was opened for writing (O_WRONLY or O_RDWR) was

 closed.

 FAN_CLOSE_NOWRITE

 A file or directory that was opened read-only (O_RDONLY) was

 closed. Page 6/23

 FAN_Q_OVERFLOW

 The event queue exceeded the limit of 16384 entries. This limit

 can be overridden by specifying the FAN_UNLIMITED_QUEUE flag

 when calling fanotify_init(2).

 FAN_ACCESS_PERM

 An application wants to read a file or directory, for example

 using read(2) or readdir(2). The reader must write a response

 (as described below) that determines whether the permission to

 access the filesystem object shall be granted.

 FAN_OPEN_PERM

 An application wants to open a file or directory. The reader

 must write a response that determines whether the permission to

 open the filesystem object shall be granted.

 FAN_OPEN_EXEC_PERM

 An application wants to open a file for execution. The reader

 must write a response that determines whether the permission to

 open the filesystem object for execution shall be granted. See

 NOTES in fanotify_mark(2) for additional details.

 To check for any close event, the following bit mask may be used:

 FAN_CLOSE

 A file was closed. This is a synonym for:

 FAN_CLOSE_WRITE | FAN_CLOSE_NOWRITE

 To check for any move event, the following bit mask may be used:

 FAN_MOVE

 A file or directory was moved. This is a synonym for:

 FAN_MOVED_FROM | FAN_MOVED_TO

 The following bits may appear in mask only in conjunction with other

 event type bits:

 FAN_ONDIR

 The events described in the mask have occurred on a directory

 object. Reporting events on directories requires setting this

 flag in the mark mask. See fanotify_mark(2) for additional de?

 tails. The FAN_ONDIR flag is reported in an event mask only if Page 7/23

 the fanotify group identifies filesystem objects by file han?

 dles.

 The fields of the fanotify_event_info_fid structure are as follows:

 hdr This is a structure of type fanotify_event_info_header. It is a

 generic header that contains information used to describe an ad?

 ditional information record attached to the event. For example,

 when an fanotify file descriptor is created using FAN_RE?

 PORT_FID, a single information record is expected to be attached

 to the event with info_type field value of

 FAN_EVENT_INFO_TYPE_FID. When an fanotify file descriptor is

 created using the combination of FAN_REPORT_FID and FAN_RE?

 PORT_DIR_FID, there may be two information records attached to

 the event: one with info_type field value of

 FAN_EVENT_INFO_TYPE_DFID, identifying a parent directory object,

 and one with info_type field value of FAN_EVENT_INFO_TYPE_FID,

 identifying a non-directory object. The fan?

 otify_event_info_header contains a len field. The value of len

 is the size of the additional information record including the

 fanotify_event_info_header itself. The total size of all addi?

 tional information records is not expected to be bigger than (

 event_len - metadata_len).

 fsid This is a unique identifier of the filesystem containing the ob?

 ject associated with the event. It is a structure of type

 __kernel_fsid_t and contains the same value as f_fsid when call?

 ing statfs(2).

 file_handle

 This is a variable length structure of type struct file_handle.

 It is an opaque handle that corresponds to a specified object on

 a filesystem as returned by name_to_handle_at(2). It can be

 used to uniquely identify a file on a filesystem and can be

 passed as an argument to open_by_handle_at(2). Note that for

 the directory entry modification events FAN_CREATE, FAN_DELETE,

 and FAN_MOVE, the file_handle identifies the modified directory Page 8/23

 and not the created/deleted/moved child object. If the value of

 info_type field is FAN_EVENT_INFO_TYPE_DFID_NAME, the file han?

 dle is followed by a null terminated string that identifies the

 created/deleted/moved directory entry name. For other events

 such as FAN_OPEN, FAN_ATTRIB, FAN_DELETE_SELF, and

 FAN_MOVE_SELF, if the value of info_type field is

 FAN_EVENT_INFO_TYPE_FID, the file_handle identifies the object

 correlated to the event. If the value of info_type field is

 FAN_EVENT_INFO_TYPE_DFID, the file_handle identifies the direc?

 tory object correlated to the event or the parent directory of a

 non-directory object correlated to the event. If the value of

 info_type field is FAN_EVENT_INFO_TYPE_DFID_NAME, the file_han?

 dle identifies the same directory object that would be reported

 with FAN_EVENT_INFO_TYPE_DFID and the file handle is followed by

 a null terminated string that identifies the name of a directory

 entry in that directory, or '.' to identify the directory object

 itself.

 The following macros are provided to iterate over a buffer containing

 fanotify event metadata returned by a read(2) from an fanotify file de?

 scriptor:

 FAN_EVENT_OK(meta, len)

 This macro checks the remaining length len of the buffer meta

 against the length of the metadata structure and the event_len

 field of the first metadata structure in the buffer.

 FAN_EVENT_NEXT(meta, len)

 This macro uses the length indicated in the event_len field of

 the metadata structure pointed to by meta to calculate the ad?

 dress of the next metadata structure that follows meta. len is

 the number of bytes of metadata that currently remain in the

 buffer. The macro returns a pointer to the next metadata struc?

 ture that follows meta, and reduces len by the number of bytes

 in the metadata structure that has been skipped over (i.e., it

 subtracts meta->event_len from len). Page 9/23

 In addition, there is:

 FAN_EVENT_METADATA_LEN

 This macro returns the size (in bytes) of the structure fan?

 otify_event_metadata. This is the minimum size (and currently

 the only size) of any event metadata.

 Monitoring an fanotify file descriptor for events

 When an fanotify event occurs, the fanotify file descriptor indicates

 as readable when passed to epoll(7), poll(2), or select(2).

 Dealing with permission events

 For permission events, the application must write(2) a structure of the

 following form to the fanotify file descriptor:

 struct fanotify_response {

 __s32 fd;

 __u32 response;

 };

 The fields of this structure are as follows:

 fd This is the file descriptor from the structure fan?

 otify_event_metadata.

 response

 This field indicates whether or not the permission is to be

 granted. Its value must be either FAN_ALLOW to allow the file

 operation or FAN_DENY to deny the file operation.

 If access is denied, the requesting application call will receive an

 EPERM error.

 Closing the fanotify file descriptor

 When all file descriptors referring to the fanotify notification group

 are closed, the fanotify group is released and its resources are freed

 for reuse by the kernel. Upon close(2), outstanding permission events

 will be set to allowed.

 /proc/[pid]/fdinfo

 The file /proc/[pid]/fdinfo/[fd] contains information about fanotify

 marks for file descriptor fd of process pid. See proc(5) for details.

ERRORS Page 10/23

 In addition to the usual errors for read(2), the following errors can

 occur when reading from the fanotify file descriptor:

 EINVAL The buffer is too small to hold the event.

 EMFILE The per-process limit on the number of open files has been

 reached. See the description of RLIMIT_NOFILE in getrlimit(2).

 ENFILE The system-wide limit on the total number of open files has been

 reached. See /proc/sys/fs/file-max in proc(5).

 ETXTBSY

 This error is returned by read(2) if O_RDWR or O_WRONLY was

 specified in the event_f_flags argument when calling fan?

 otify_init(2) and an event occurred for a monitored file that is

 currently being executed.

 In addition to the usual errors for write(2), the following errors can

 occur when writing to the fanotify file descriptor:

 EINVAL Fanotify access permissions are not enabled in the kernel con?

 figuration or the value of response in the response structure is

 not valid.

 ENOENT The file descriptor fd in the response structure is not valid.

 This may occur when a response for the permission event has al?

 ready been written.

VERSIONS

 The fanotify API was introduced in version 2.6.36 of the Linux kernel

 and enabled in version 2.6.37. Fdinfo support was added in version

 3.8.

CONFORMING TO

 The fanotify API is Linux-specific.

NOTES

 The fanotify API is available only if the kernel was built with the

 CONFIG_FANOTIFY configuration option enabled. In addition, fanotify

 permission handling is available only if the CONFIG_FANOTIFY_AC?

 CESS_PERMISSIONS configuration option is enabled.

 Limitations and caveats

 Fanotify reports only events that a user-space program triggers through Page 11/23

 the filesystem API. As a result, it does not catch remote events that

 occur on network filesystems.

 The fanotify API does not report file accesses and modifications that

 may occur because of mmap(2), msync(2), and munmap(2).

 Events for directories are created only if the directory itself is

 opened, read, and closed. Adding, removing, or changing children of a

 marked directory does not create events for the monitored directory it?

 self.

 Fanotify monitoring of directories is not recursive: to monitor subdi?

 rectories under a directory, additional marks must be created. The

 FAN_CREATE event can be used for detecting when a subdirectory has been

 created under a marked directory. An additional mark must then be set

 on the newly created subdirectory. This approach is racy, because it

 can lose events that occurred inside the newly created subdirectory,

 before a mark is added on that subdirectory. Monitoring mounts offers

 the capability to monitor a whole directory tree in a race-free manner.

 Monitoring filesystems offers the capability to monitor changes made

 from any mount of a filesystem instance in a race-free manner.

 The event queue can overflow. In this case, events are lost.

BUGS

 Before Linux 3.19, fallocate(2) did not generate fanotify events.

 Since Linux 3.19, calls to fallocate(2) generate FAN_MODIFY events.

 As of Linux 3.17, the following bugs exist:

 * On Linux, a filesystem object may be accessible through multiple

 paths, for example, a part of a filesystem may be remounted using

 the --bind option of mount(8). A listener that marked a mount will

 be notified only of events that were triggered for a filesystem ob?

 ject using the same mount. Any other event will pass unnoticed.

 * When an event is generated, no check is made to see whether the user

 ID of the receiving process has authorization to read or write the

 file before passing a file descriptor for that file. This poses a

 security risk, when the CAP_SYS_ADMIN capability is set for programs

 executed by unprivileged users. Page 12/23

 * If a call to read(2) processes multiple events from the fanotify

 queue and an error occurs, the return value will be the total length

 of the events successfully copied to the user-space buffer before

 the error occurred. The return value will not be -1, and errno will

 not be set. Thus, the reading application has no way to detect the

 error.

EXAMPLES

 The two example programs below demonstrate the usage of the fanotify

 API.

 Example program: fanotify_example.c

 The first program is an example of fanotify being used with its event

 object information passed in the form of a file descriptor. The pro?

 gram marks the mount point passed as a command-line argument and waits

 for events of type FAN_OPEN_PERM and FAN_CLOSE_WRITE. When a permis?

 sion event occurs, a FAN_ALLOW response is given.

 The following shell session shows an example of running this program.

 This session involved editing the file /home/user/temp/notes. Before

 the file was opened, a FAN_OPEN_PERM event occurred. After the file

 was closed, a FAN_CLOSE_WRITE event occurred. Execution of the program

 ends when the user presses the ENTER key.

 # ./fanotify_example /home

 Press enter key to terminate.

 Listening for events.

 FAN_OPEN_PERM: File /home/user/temp/notes

 FAN_CLOSE_WRITE: File /home/user/temp/notes

 Listening for events stopped.

 Program source: fanotify_example.c

 #define _GNU_SOURCE /* Needed to get O_LARGEFILE definition */

 #include <errno.h>

 #include <fcntl.h>

 #include <limits.h>

 #include <poll.h>

 #include <stdio.h> Page 13/23

 #include <stdlib.h>

 #include <sys/fanotify.h>

 #include <unistd.h>

 /* Read all available fanotify events from the file descriptor 'fd' */

 static void

 handle_events(int fd)

 {

 const struct fanotify_event_metadata *metadata;

 struct fanotify_event_metadata buf[200];

 ssize_t len;

 char path[PATH_MAX];

 ssize_t path_len;

 char procfd_path[PATH_MAX];

 struct fanotify_response response;

 /* Loop while events can be read from fanotify file descriptor */

 for (;;) {

 /* Read some events */

 len = read(fd, buf, sizeof(buf));

 if (len == -1 && errno != EAGAIN) {

 perror("read");

 exit(EXIT_FAILURE);

 }

 /* Check if end of available data reached */

 if (len <= 0)

 break;

 /* Point to the first event in the buffer */

 metadata = buf;

 /* Loop over all events in the buffer */

 while (FAN_EVENT_OK(metadata, len)) {

 /* Check that run-time and compile-time structures match */

 if (metadata->vers != FANOTIFY_METADATA_VERSION) {

 fprintf(stderr,

 "Mismatch of fanotify metadata version.\n"); Page 14/23

 exit(EXIT_FAILURE);

 }

 /* metadata->fd contains either FAN_NOFD, indicating a

 queue overflow, or a file descriptor (a nonnegative

 integer). Here, we simply ignore queue overflow. */

 if (metadata->fd >= 0) {

 /* Handle open permission event */

 if (metadata->mask & FAN_OPEN_PERM) {

 printf("FAN_OPEN_PERM: ");

 /* Allow file to be opened */

 response.fd = metadata->fd;

 response.response = FAN_ALLOW;

 write(fd, &response, sizeof(response));

 }

 /* Handle closing of writable file event */

 if (metadata->mask & FAN_CLOSE_WRITE)

 printf("FAN_CLOSE_WRITE: ");

 /* Retrieve and print pathname of the accessed file */

 snprintf(procfd_path, sizeof(procfd_path),

 "/proc/self/fd/%d", metadata->fd);

 path_len = readlink(procfd_path, path,

 sizeof(path) - 1);

 if (path_len == -1) {

 perror("readlink");

 exit(EXIT_FAILURE);

 }

 path[path_len] = '\0';

 printf("File %s\n", path);

 /* Close the file descriptor of the event */

 close(metadata->fd);

 }

 /* Advance to next event */

 metadata = FAN_EVENT_NEXT(metadata, len); Page 15/23

 }

 }

 }

 int

 main(int argc, char *argv[])

 {

 char buf;

 int fd, poll_num;

 nfds_t nfds;

 struct pollfd fds[2];

 /* Check mount point is supplied */

 if (argc != 2) {

 fprintf(stderr, "Usage: %s MOUNT\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 printf("Press enter key to terminate.\n");

 /* Create the file descriptor for accessing the fanotify API */

 fd = fanotify_init(FAN_CLOEXEC | FAN_CLASS_CONTENT | FAN_NONBLOCK,

 O_RDONLY | O_LARGEFILE);

 if (fd == -1) {

 perror("fanotify_init");

 exit(EXIT_FAILURE);

 }

 /* Mark the mount for:

 - permission events before opening files

 - notification events after closing a write-enabled

 file descriptor */

 if (fanotify_mark(fd, FAN_MARK_ADD | FAN_MARK_MOUNT,

 FAN_OPEN_PERM | FAN_CLOSE_WRITE, AT_FDCWD,

 argv[1]) == -1) {

 perror("fanotify_mark");

 exit(EXIT_FAILURE);

 } Page 16/23

 /* Prepare for polling */

 nfds = 2;

 /* Console input */

 fds[0].fd = STDIN_FILENO;

 fds[0].events = POLLIN;

 /* Fanotify input */

 fds[1].fd = fd;

 fds[1].events = POLLIN;

 /* This is the loop to wait for incoming events */

 printf("Listening for events.\n");

 while (1) {

 poll_num = poll(fds, nfds, -1);

 if (poll_num == -1) {

 if (errno == EINTR) /* Interrupted by a signal */

 continue; /* Restart poll() */

 perror("poll"); /* Unexpected error */

 exit(EXIT_FAILURE);

 }

 if (poll_num > 0) {

 if (fds[0].revents & POLLIN) {

 /* Console input is available: empty stdin and quit */

 while (read(STDIN_FILENO, &buf, 1) > 0 && buf != '\n')

 continue;

 break;

 }

 if (fds[1].revents & POLLIN) {

 /* Fanotify events are available */

 handle_events(fd);

 }

 }

 }

 printf("Listening for events stopped.\n");

 exit(EXIT_SUCCESS); Page 17/23

 }

 Example program: fanotify_fid.c

 The second program is an example of fanotify being used with a group

 that identifies objects by file handles. The program marks the

 filesystem object that is passed as a command-line argument and waits

 until an event of type FAN_CREATE has occurred. The event mask indi?

 cates which type of filesystem object?either a file or a directory?was

 created. Once all events have been read from the buffer and processed

 accordingly, the program simply terminates.

 The following shell sessions show two different invocations of this

 program, with different actions performed on a watched object.

 The first session shows a mark being placed on /home/user. This is

 followed by the creation of a regular file, /home/user/testfile.txt.

 This results in a FAN_CREATE event being generated and reported against

 the file's parent watched directory object and with the created file

 name. Program execution ends once all events captured within the buf?

 fer have been processed.

 # ./fanotify_fid /home/user

 Listening for events.

 FAN_CREATE (file created):

 Directory /home/user has been modified.

 Entry 'testfile.txt' is not a subdirectory.

 All events processed successfully. Program exiting.

 $ touch /home/user/testfile.txt # In another terminal

 The second session shows a mark being placed on /home/user. This is

 followed by the creation of a directory, /home/user/testdir. This spe?

 cific action results in a FAN_CREATE event being generated and is re?

 ported with the FAN_ONDIR flag set and with the created directory name.

 # ./fanotify_fid /home/user

 Listening for events.

 FAN_CREATE | FAN_ONDIR (subdirectory created):

 Directory /home/user has been modified.

 Entry 'testdir' is a subdirectory. Page 18/23

 All events processed successfully. Program exiting.

 $ mkdir -p /home/user/testdir # In another terminal

 Program source: fanotify_fid.c

 #define _GNU_SOURCE

 #include <errno.h>

 #include <fcntl.h>

 #include <limits.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <sys/types.h>

 #include <sys/stat.h>

 #include <sys/fanotify.h>

 #include <unistd.h>

 #define BUF_SIZE 256

 int

 main(int argc, char **argv)

 {

 int fd, ret, event_fd, mount_fd;

 ssize_t len, path_len;

 char path[PATH_MAX];

 char procfd_path[PATH_MAX];

 char events_buf[BUF_SIZE];

 struct file_handle *file_handle;

 struct fanotify_event_metadata *metadata;

 struct fanotify_event_info_fid *fid;

 const char *file_name;

 struct stat sb;

 if (argc != 2) {

 fprintf(stderr, "Invalid number of command line arguments.\n");

 exit(EXIT_FAILURE);

 }

 mount_fd = open(argv[1], O_DIRECTORY | O_RDONLY);

 if (mount_fd == -1) { Page 19/23

 perror(argv[1]);

 exit(EXIT_FAILURE);

 }

 /* Create an fanotify file descriptor with FAN_REPORT_DFID_NAME as

 a flag so that program can receive fid events with directory

 entry name. */

 fd = fanotify_init(FAN_CLASS_NOTIF | FAN_REPORT_DFID_NAME, 0);

 if (fd == -1) {

 perror("fanotify_init");

 exit(EXIT_FAILURE);

 }

 /* Place a mark on the filesystem object supplied in argv[1]. */

 ret = fanotify_mark(fd, FAN_MARK_ADD | FAN_MARK_ONLYDIR,

 FAN_CREATE | FAN_ONDIR,

 AT_FDCWD, argv[1]);

 if (ret == -1) {

 perror("fanotify_mark");

 exit(EXIT_FAILURE);

 }

 printf("Listening for events.\n");

 /* Read events from the event queue into a buffer */

 len = read(fd, events_buf, sizeof(events_buf));

 if (len == -1 && errno != EAGAIN) {

 perror("read");

 exit(EXIT_FAILURE);

 }

 /* Process all events within the buffer */

 for (metadata = (struct fanotify_event_metadata *) events_buf;

 FAN_EVENT_OK(metadata, len);

 metadata = FAN_EVENT_NEXT(metadata, len)) {

 fid = (struct fanotify_event_info_fid *) (metadata + 1);

 file_handle = (struct file_handle *) fid->handle;

 /* Ensure that the event info is of the correct type */ Page 20/23

 if (fid->hdr.info_type == FAN_EVENT_INFO_TYPE_FID ||

 fid->hdr.info_type == FAN_EVENT_INFO_TYPE_DFID) {

 file_name = NULL;

 } else if (fid->hdr.info_type == FAN_EVENT_INFO_TYPE_DFID_NAME) {

 file_name = file_handle->f_handle +

 file_handle->handle_bytes;

 } else {

 fprintf(stderr, "Received unexpected event info type.\n");

 exit(EXIT_FAILURE);

 }

 if (metadata->mask == FAN_CREATE)

 printf("FAN_CREATE (file created):\n");

 if (metadata->mask == (FAN_CREATE | FAN_ONDIR))

 printf("FAN_CREATE | FAN_ONDIR (subdirectory created):\n");

 /* metadata->fd is set to FAN_NOFD when the group identifies

 objects by file handles. To obtain a file descriptor for

 the file object corresponding to an event you can use the

 struct file_handle that's provided within the

 fanotify_event_info_fid in conjunction with the

 open_by_handle_at(2) system call. A check for ESTALE is

 done to accommodate for the situation where the file handle

 for the object was deleted prior to this system call. */

 event_fd = open_by_handle_at(mount_fd, file_handle, O_RDONLY);

 if (event_fd == -1) {

 if (errno == ESTALE) {

 printf("File handle is no longer valid. "

 "File has been deleted\n");

 continue;

 } else {

 perror("open_by_handle_at");

 exit(EXIT_FAILURE);

 }

 } Page 21/23

 snprintf(procfd_path, sizeof(procfd_path), "/proc/self/fd/%d",

 event_fd);

 /* Retrieve and print the path of the modified dentry */

 path_len = readlink(procfd_path, path, sizeof(path) - 1);

 if (path_len == -1) {

 perror("readlink");

 exit(EXIT_FAILURE);

 }

 path[path_len] = '\0';

 printf("\tDirectory '%s' has been modified.\n", path);

 if (file_name) {

 ret = fstatat(event_fd, file_name, &sb, 0);

 if (ret == -1) {

 if (errno != ENOENT) {

 perror("fstatat");

 exit(EXIT_FAILURE);

 }

 printf("\tEntry '%s' does not exist.\n", file_name);

 } else if ((sb.st_mode & S_IFMT) == S_IFDIR) {

 printf("\tEntry '%s' is a subdirectory.\n", file_name);

 } else {

 printf("\tEntry '%s' is not a subdirectory.\n",

 file_name);

 }

 }

 /* Close associated file descriptor for this event */

 close(event_fd);

 }

 printf("All events processed successfully. Program exiting.\n");

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 fanotify_init(2), fanotify_mark(2), inotify(7) Page 22/23

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 FANOTIFY(7)

Page 23/23

