
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'flistxattr.2' command

$ man flistxattr.2

LISTXATTR(2) Linux Programmer's Manual LISTXATTR(2)

NAME

 listxattr, llistxattr, flistxattr - list extended attribute names

SYNOPSIS

 #include <sys/types.h>

 #include <sys/xattr.h>

 ssize_t listxattr(const char *path, char *list, size_t size);

 ssize_t llistxattr(const char *path, char *list, size_t size);

 ssize_t flistxattr(int fd, char *list, size_t size);

DESCRIPTION

 Extended attributes are name:value pairs associated with inodes (files,

 directories, symbolic links, etc.). They are extensions to the normal

 attributes which are associated with all inodes in the system (i.e.,

 the stat(2) data). A complete overview of extended attributes concepts

 can be found in xattr(7).

 listxattr() retrieves the list of extended attribute names associated

 with the given path in the filesystem. The retrieved list is placed in

 list, a caller-allocated buffer whose size (in bytes) is specified in

 the argument size. The list is the set of (null-terminated) names, one

 after the other. Names of extended attributes to which the calling

 process does not have access may be omitted from the list. The length

 of the attribute name list is returned.

 llistxattr() is identical to listxattr(), except in the case of a sym? Page 1/7

 bolic link, where the list of names of extended attributes associated

 with the link itself is retrieved, not the file that it refers to.

 flistxattr() is identical to listxattr(), only the open file referred

 to by fd (as returned by open(2)) is interrogated in place of path.

 A single extended attribute name is a null-terminated string. The name

 includes a namespace prefix; there may be several, disjoint namespaces

 associated with an individual inode.

 If size is specified as zero, these calls return the current size of

 the list of extended attribute names (and leave list unchanged). This

 can be used to determine the size of the buffer that should be supplied

 in a subsequent call. (But, bear in mind that there is a possibility

 that the set of extended attributes may change between the two calls,

 so that it is still necessary to check the return status from the sec?

 ond call.)

 Example

 The list of names is returned as an unordered array of null-terminated

 character strings (attribute names are separated by null bytes ('\0')),

 like this:

 user.name1\0system.name1\0user.name2\0

 Filesystems that implement POSIX ACLs using extended attributes might

 return a list like this:

 system.posix_acl_access\0system.posix_acl_default\0

RETURN VALUE

 On success, a nonnegative number is returned indicating the size of the

 extended attribute name list. On failure, -1 is returned and errno is

 set appropriately.

ERRORS

 E2BIG The size of the list of extended attribute names is larger than

 the maximum size allowed; the list cannot be retrieved. This

 can happen on filesystems that support an unlimited number of

 extended attributes per file such as XFS, for example. See

 BUGS.

 ENOTSUP Page 2/7

 Extended attributes are not supported by the filesystem, or are

 disabled.

 ERANGE The size of the list buffer is too small to hold the result.

 In addition, the errors documented in stat(2) can also occur.

VERSIONS

 These system calls have been available on Linux since kernel 2.4; glibc

 support is provided since version 2.3.

CONFORMING TO

 These system calls are Linux-specific.

BUGS

 As noted in xattr(7), the VFS imposes a limit of 64 kB on the size of

 the extended attribute name list returned by listxattr(7). If the to?

 tal size of attribute names attached to a file exceeds this limit, it

 is no longer possible to retrieve the list of attribute names.

EXAMPLES

 The following program demonstrates the usage of listxattr() and getx?

 attr(2). For the file whose pathname is provided as a command-line ar?

 gument, it lists all extended file attributes and their values.

 To keep the code simple, the program assumes that attribute keys and

 values are constant during the execution of the program. A production

 program should expect and handle changes during execution of the pro?

 gram. For example, the number of bytes required for attribute keys

 might increase between the two calls to listxattr(). An application

 could handle this possibility using a loop that retries the call (per?

 haps up to a predetermined maximum number of attempts) with a larger

 buffer each time it fails with the error ERANGE. Calls to getxattr(2)

 could be handled similarly.

 The following output was recorded by first creating a file, setting

 some extended file attributes, and then listing the attributes with the

 example program.

 Example output

 $ touch /tmp/foo

 $ setfattr -n user.fred -v chocolate /tmp/foo Page 3/7

 $ setfattr -n user.frieda -v bar /tmp/foo

 $ setfattr -n user.empty /tmp/foo

 $./listxattr /tmp/foo

 user.fred: chocolate

 user.frieda: bar

 user.empty: <no value>

 Program source (listxattr.c)

 #include <malloc.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <string.h>

 #include <sys/types.h>

 #include <sys/xattr.h>

 int

 main(int argc, char *argv[])

 {

 ssize_t buflen, keylen, vallen;

 char *buf, *key, *val;

 if (argc != 2) {

 fprintf(stderr, "Usage: %s path\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 /*

 * Determine the length of the buffer needed.

 */

 buflen = listxattr(argv[1], NULL, 0);

 if (buflen == -1) {

 perror("listxattr");

 exit(EXIT_FAILURE);

 }

 if (buflen == 0) {

 printf("%s has no attributes.\n", argv[1]);

 exit(EXIT_SUCCESS); Page 4/7

 }

 /*

 * Allocate the buffer.

 */

 buf = malloc(buflen);

 if (buf == NULL) {

 perror("malloc");

 exit(EXIT_FAILURE);

 }

 /*

 * Copy the list of attribute keys to the buffer.

 */

 buflen = listxattr(argv[1], buf, buflen);

 if (buflen == -1) {

 perror("listxattr");

 exit(EXIT_FAILURE);

 }

 /*

 * Loop over the list of zero terminated strings with the

 * attribute keys. Use the remaining buffer length to determine

 * the end of the list.

 */

 key = buf;

 while (buflen > 0) {

 /*

 * Output attribute key.

 */

 printf("%s: ", key);

 /*

 * Determine length of the value.

 */

 vallen = getxattr(argv[1], key, NULL, 0);

 if (vallen == -1) Page 5/7

 perror("getxattr");

 if (vallen > 0) {

 /*

 * Allocate value buffer.

 * One extra byte is needed to append 0x00.

 */

 val = malloc(vallen + 1);

 if (val == NULL) {

 perror("malloc");

 exit(EXIT_FAILURE);

 }

 /*

 * Copy value to buffer.

 */

 vallen = getxattr(argv[1], key, val, vallen);

 if (vallen == -1)

 perror("getxattr");

 else {

 /*

 * Output attribute value.

 */

 val[vallen] = 0;

 printf("%s", val);

 }

 free(val);

 } else if (vallen == 0)

 printf("<no value>");

 printf("\n");

 /*

 * Forward to next attribute key.

 */

 keylen = strlen(key) + 1;

 buflen -= keylen; Page 6/7

 key += keylen;

 }

 free(buf);

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 getfattr(1), setfattr(1), getxattr(2), open(2), removexattr(2), setx?

 attr(2), stat(2), symlink(7), xattr(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 LISTXATTR(2)

Page 7/7

