r*‘ ,

University

FPDF Library

RedHat
Enterprise Linux

PDF generator
i,

g

Manual Pages

Full credit is given to the above companies including the 0S
that this PDF file was generated!

Red Hat Enterprise Linux Release 9.2 Manual Pages on 'get_thread_area.2' command

$ man get_thread_area.2

SET_THREAD_AREA(2) Linux Programmer's Manual SET_THREAD_AREA(2)

NAME
get_thread_area, set _thread_area - manipulate thread-local storage in?
formation
SYNOPSIS
#include <linux/unistd.h>
#if defined __i386__ || defined _ x86_64_
include <asm/Idt.h>
int get_thread_area(struct user_desc *u_info);
int set_thread_area(struct user_desc *u_info);
#elif defined __ m68k___
int get_thread_area(void);
int set_thread_area(unsigned long tp);
#elif defined __mips___
int set_thread_area(unsigned long addr);
#endif
Note: There are no glibc wrappers for these system calls; see NOTES.
DESCRIPTION
These calls provide architecture-specific support for a thread-local
storage implementation. At the moment, set_thread_area() is available
on m68k, MIPS, and x86 (both 32-bit and 64-bit variants);
get_thread_area() is available on m68k and x86.

On m68k and MIPS, set_thread_area() allows storing an arbitrary pointer

Page 1/4

(provided in the tp argument on m68k and in the addr argument on MIPS)
in the kernel data structure associated with the calling thread; this
pointer can later be retrieved using get_thread_area() (see also NOTES
for information regarding obtaining the thread pointer on MIPS).
On x86, Linux dedicates three global descriptor table (GDT) entries for
thread-local storage. For more information about the GDT, see the In?
tel Software Developer's Manual or the AMD Architecture Programming
Manual.
Both of these system calls take an argument that is a pointer to a
structure of the following type:
struct user_desc {
unsigned int entry_number;
unsigned int base_addr;
unsigned int limit;
unsigned int seg_32hit:1;
unsigned int contents:2;
unsigned int read_exec_only:1;
unsigned int limit_in_pages:1;
unsigned int seg_not_present:1;
unsigned int useable:1;
#ifdef _ x86_64__
unsigned int Im:1;
#endif
¥
get_thread_area() reads the GDT entry indicated by u_info->entry_number
and fills in the rest of the fields in u_info.
set_thread_area() sets a TLS entry in the GDT.
The TLS array entry set by set_thread_area() corresponds to the value
of u_info->entry_number passed in by the user. If this value is in
bounds, set_thread_area() writes the TLS descriptor pointed to by
u_info into the thread's TLS array.
When set_thread_area() is passed an entry_number of -1, it searches for

a free TLS entry. If set_thread_area() finds a free TLS entry, the

Page 2/4

value of u_info->entry_number is set upon return to show which entry

was changed.

A user_desc is considered "empty" if read_exec_only and seg_not_present

are setto 1 and all of the other fields are 0. If an "empty" descrip?
tor is passed to set_thread_area(), the corresponding TLS entry will be

cleared. See BUGS for additional details.

Since Linux 3.19, set_thread_area() cannot be used to write non-present

segments, 16-bit segments, or code segments, although clearing a seg?

ment is still acceptable.
RETURN VALUE
On x86, these system calls return 0 on success, and -1 on failure, with

errno set appropriately.

On MIPS and m68k, set thread area() always returns 0. On m68k,

get_thread_area() returns the thread area pointer value (previously set
via set_thread_area()).

ERRORS
EFAULT u_info is an invalid pointer.

EINVAL u_info->entry_number is out of bounds.

ENOSYS get_thread_area() or set_thread_area() was invoked as a 64-hit

system call.
ESRCH (set_thread_area()) A free TLS entry could not be located.
VERSIONS
set_thread_area() first appeared in Linux 2.5.29. get_thread_area()
first appeared in Linux 2.5.32.
CONFORMING TO
set_thread_area() and get_thread_area() are Linux-specific and should
not be used in programs that are intended to be portable.
NOTES
Glibc does not provide wrappers for these system calls, since they are
generally intended for use only by threading libraries. In the un?
likely event that you want to call them directly, use syscall(2).
arch_prctl(2) can interfere with set_thread_area() on x86. See

arch_prctl(2) for more details. This is not normally a problem, as

Page 3/4

arch_prctl(2) is normally used only by 64-bit programs.
On MIPS, the current value of the thread area pointer can be obtained
using the instruction:
rdhwr dest, $29

This instruction traps and is handled by kernel.

BUGS
On 64-bit kernels before Linux 3.19, one of the padding bits in
user_desc, if set, would prevent the descriptor from being considered
empty (see modify_Idt(2)). As a result, the only reliable way to clear
a TLS entry is to use memset(3) to zero the entire user_desc structure,
including padding bits, and then to set the read_exec_only and
seg_not_present bits. On Linux 3.19, a user_desc consisting entirely
of zeros except for entry_number will also be interpreted as a request
to clear a TLS entry, but this behaved differently on older kernels.
Prior to Linux 3.19, the DS and ES segment registers must not reference
TLS entries.

SEE ALSO
arch_prctl(2), modify_ldt(2), ptrace(2) (PTRACE_GET_THREAD_AREA and
PTRACE_SET_THREAD_AREA)

COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A
description of the project, information about reporting bugs, and the
latest version of this page, can be found at
https://lwww.kernel.org/doc/man-pages/.

Linux 2020-02-09 SET_THREAD_AREA(2)

Page 4/4

