
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'getaddrinfo.3' command

$ man getaddrinfo.3

GETADDRINFO(3) Linux Programmer's Manual GETADDRINFO(3)

NAME

 getaddrinfo, freeaddrinfo, gai_strerror - network address and service

 translation

SYNOPSIS

 #include <sys/types.h>

 #include <sys/socket.h>

 #include <netdb.h>

 int getaddrinfo(const char *node, const char *service,

 const struct addrinfo *hints,

 struct addrinfo **res);

 void freeaddrinfo(struct addrinfo *res);

 const char *gai_strerror(int errcode);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 getaddrinfo(), freeaddrinfo(), gai_strerror():

 Since glibc 2.22: _POSIX_C_SOURCE >= 200112L

 Glibc 2.21 and earlier: _POSIX_C_SOURCE

DESCRIPTION

 Given node and service, which identify an Internet host and a service,

 getaddrinfo() returns one or more addrinfo structures, each of which

 contains an Internet address that can be specified in a call to bind(2)

 or connect(2). The getaddrinfo() function combines the functionality

 provided by the gethostbyname(3) and getservbyname(3) functions into a Page 1/13

 single interface, but unlike the latter functions, getaddrinfo() is

 reentrant and allows programs to eliminate IPv4-versus-IPv6 dependen?

 cies.

 The addrinfo structure used by getaddrinfo() contains the following

 fields:

 struct addrinfo {

 int ai_flags;

 int ai_family;

 int ai_socktype;

 int ai_protocol;

 socklen_t ai_addrlen;

 struct sockaddr *ai_addr;

 char *ai_canonname;

 struct addrinfo *ai_next;

 };

 The hints argument points to an addrinfo structure that specifies cri?

 teria for selecting the socket address structures returned in the list

 pointed to by res. If hints is not NULL it points to an addrinfo

 structure whose ai_family, ai_socktype, and ai_protocol specify crite?

 ria that limit the set of socket addresses returned by getaddrinfo(),

 as follows:

 ai_family

 This field specifies the desired address family for the returned

 addresses. Valid values for this field include AF_INET and

 AF_INET6. The value AF_UNSPEC indicates that getaddrinfo()

 should return socket addresses for any address family (either

 IPv4 or IPv6, for example) that can be used with node and ser?

 vice.

 ai_socktype

 This field specifies the preferred socket type, for example

 SOCK_STREAM or SOCK_DGRAM. Specifying 0 in this field indicates

 that socket addresses of any type can be returned by getad?

 drinfo(). Page 2/13

 ai_protocol

 This field specifies the protocol for the returned socket ad?

 dresses. Specifying 0 in this field indicates that socket ad?

 dresses with any protocol can be returned by getaddrinfo().

 ai_flags

 This field specifies additional options, described below. Mul?

 tiple flags are specified by bitwise OR-ing them together.

 All the other fields in the structure pointed to by hints must contain

 either 0 or a null pointer, as appropriate.

 Specifying hints as NULL is equivalent to setting ai_socktype and

 ai_protocol to 0; ai_family to AF_UNSPEC; and ai_flags to

 (AI_V4MAPPED | AI_ADDRCONFIG). (POSIX specifies different defaults for

 ai_flags; see NOTES.) node specifies either a numerical network ad?

 dress (for IPv4, numbers-and-dots notation as supported by

 inet_aton(3); for IPv6, hexadecimal string format as supported by

 inet_pton(3)), or a network hostname, whose network addresses are

 looked up and resolved. If hints.ai_flags contains the AI_NUMERICHOST

 flag, then node must be a numerical network address. The AI_NUMERI?

 CHOST flag suppresses any potentially lengthy network host address

 lookups.

 If the AI_PASSIVE flag is specified in hints.ai_flags, and node is

 NULL, then the returned socket addresses will be suitable for

 bind(2)ing a socket that will accept(2) connections. The returned

 socket address will contain the "wildcard address" (INADDR_ANY for IPv4

 addresses, IN6ADDR_ANY_INIT for IPv6 address). The wildcard address is

 used by applications (typically servers) that intend to accept connec?

 tions on any of the host's network addresses. If node is not NULL,

 then the AI_PASSIVE flag is ignored.

 If the AI_PASSIVE flag is not set in hints.ai_flags, then the returned

 socket addresses will be suitable for use with connect(2), sendto(2),

 or sendmsg(2). If node is NULL, then the network address will be set

 to the loopback interface address (INADDR_LOOPBACK for IPv4 addresses,

 IN6ADDR_LOOPBACK_INIT for IPv6 address); this is used by applications Page 3/13

 that intend to communicate with peers running on the same host.

 service sets the port in each returned address structure. If this ar?

 gument is a service name (see services(5)), it is translated to the

 corresponding port number. This argument can also be specified as a

 decimal number, which is simply converted to binary. If service is

 NULL, then the port number of the returned socket addresses will be

 left uninitialized. If AI_NUMERICSERV is specified in hints.ai_flags

 and service is not NULL, then service must point to a string containing

 a numeric port number. This flag is used to inhibit the invocation of

 a name resolution service in cases where it is known not to be re?

 quired.

 Either node or service, but not both, may be NULL.

 The getaddrinfo() function allocates and initializes a linked list of

 addrinfo structures, one for each network address that matches node and

 service, subject to any restrictions imposed by hints, and returns a

 pointer to the start of the list in res. The items in the linked list

 are linked by the ai_next field.

 There are several reasons why the linked list may have more than one

 addrinfo structure, including: the network host is multihomed, accessi?

 ble over multiple protocols (e.g., both AF_INET and AF_INET6); or the

 same service is available from multiple socket types (one SOCK_STREAM

 address and another SOCK_DGRAM address, for example). Normally, the

 application should try using the addresses in the order in which they

 are returned. The sorting function used within getaddrinfo() is de?

 fined in RFC 3484; the order can be tweaked for a particular system by

 editing /etc/gai.conf (available since glibc 2.5).

 If hints.ai_flags includes the AI_CANONNAME flag, then the ai_canonname

 field of the first of the addrinfo structures in the returned list is

 set to point to the official name of the host.

 The remaining fields of each returned addrinfo structure are initial?

 ized as follows:

 * The ai_family, ai_socktype, and ai_protocol fields return the socket

 creation parameters (i.e., these fields have the same meaning as the Page 4/13

 corresponding arguments of socket(2)). For example, ai_family might

 return AF_INET or AF_INET6; ai_socktype might return SOCK_DGRAM or

 SOCK_STREAM; and ai_protocol returns the protocol for the socket.

 * A pointer to the socket address is placed in the ai_addr field, and

 the length of the socket address, in bytes, is placed in the ai_ad?

 drlen field.

 If hints.ai_flags includes the AI_ADDRCONFIG flag, then IPv4 addresses

 are returned in the list pointed to by res only if the local system has

 at least one IPv4 address configured, and IPv6 addresses are returned

 only if the local system has at least one IPv6 address configured. The

 loopback address is not considered for this case as valid as a config?

 ured address. This flag is useful on, for example, IPv4-only systems,

 to ensure that getaddrinfo() does not return IPv6 socket addresses that

 would always fail in connect(2) or bind(2).

 If hints.ai_flags specifies the AI_V4MAPPED flag, and hints.ai_family

 was specified as AF_INET6, and no matching IPv6 addresses could be

 found, then return IPv4-mapped IPv6 addresses in the list pointed to by

 res. If both AI_V4MAPPED and AI_ALL are specified in hints.ai_flags,

 then return both IPv6 and IPv4-mapped IPv6 addresses in the list

 pointed to by res. AI_ALL is ignored if AI_V4MAPPED is not also speci?

 fied.

 The freeaddrinfo() function frees the memory that was allocated for the

 dynamically allocated linked list res.

 Extensions to getaddrinfo() for Internationalized Domain Names

 Starting with glibc 2.3.4, getaddrinfo() has been extended to selec?

 tively allow the incoming and outgoing hostnames to be transparently

 converted to and from the Internationalized Domain Name (IDN) format

 (see RFC 3490, Internationalizing Domain Names in Applications (IDNA)).

 Four new flags are defined:

 AI_IDN If this flag is specified, then the node name given in node is

 converted to IDN format if necessary. The source encoding is

 that of the current locale.

 If the input name contains non-ASCII characters, then the IDN Page 5/13

 encoding is used. Those parts of the node name (delimited by

 dots) that contain non-ASCII characters are encoded using ASCII

 Compatible Encoding (ACE) before being passed to the name reso?

 lution functions.

 AI_CANONIDN

 After a successful name lookup, and if the AI_CANONNAME flag was

 specified, getaddrinfo() will return the canonical name of the

 node corresponding to the addrinfo structure value passed back.

 The return value is an exact copy of the value returned by the

 name resolution function.

 If the name is encoded using ACE, then it will contain the xn--

 prefix for one or more components of the name. To convert these

 components into a readable form the AI_CANONIDN flag can be

 passed in addition to AI_CANONNAME. The resulting string is en?

 coded using the current locale's encoding.

 AI_IDN_ALLOW_UNASSIGNED, AI_IDN_USE_STD3_ASCII_RULES

 Setting these flags will enable the IDNA_ALLOW_UNASSIGNED (allow

 unassigned Unicode code points) and IDNA_USE_STD3_ASCII_RULES

 (check output to make sure it is a STD3 conforming hostname)

 flags respectively to be used in the IDNA handling.

RETURN VALUE

 getaddrinfo() returns 0 if it succeeds, or one of the following nonzero

 error codes:

 EAI_ADDRFAMILY

 The specified network host does not have any network addresses

 in the requested address family.

 EAI_AGAIN

 The name server returned a temporary failure indication. Try

 again later.

 EAI_BADFLAGS

 hints.ai_flags contains invalid flags; or, hints.ai_flags in?

 cluded AI_CANONNAME and name was NULL.

 EAI_FAIL Page 6/13

 The name server returned a permanent failure indication.

 EAI_FAMILY

 The requested address family is not supported.

 EAI_MEMORY

 Out of memory.

 EAI_NODATA

 The specified network host exists, but does not have any network

 addresses defined.

 EAI_NONAME

 The node or service is not known; or both node and service are

 NULL; or AI_NUMERICSERV was specified in hints.ai_flags and ser?

 vice was not a numeric port-number string.

 EAI_SERVICE

 The requested service is not available for the requested socket

 type. It may be available through another socket type. For ex?

 ample, this error could occur if service was "shell" (a service

 available only on stream sockets), and either hints.ai_protocol

 was IPPROTO_UDP, or hints.ai_socktype was SOCK_DGRAM; or the er?

 ror could occur if service was not NULL, and hints.ai_socktype

 was SOCK_RAW (a socket type that does not support the concept of

 services).

 EAI_SOCKTYPE

 The requested socket type is not supported. This could occur,

 for example, if hints.ai_socktype and hints.ai_protocol are in?

 consistent (e.g., SOCK_DGRAM and IPPROTO_TCP, respectively).

 EAI_SYSTEM

 Other system error, check errno for details.

 The gai_strerror() function translates these error codes to a human

 readable string, suitable for error reporting.

FILES

 /etc/gai.conf

ATTRIBUTES

 For an explanation of the terms used in this section, see at? Page 7/13

 tributes(7).

 ???

 ?Interface ? Attribute ? Value ?

 ???

 ?getaddrinfo() ? Thread safety ? MT-Safe env locale ?

 ???

 ?freeaddrinfo(), ? Thread safety ? MT-Safe ?

 ?gai_strerror() ? ? ?

 ???

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008. The getaddrinfo() function is documented

 in RFC 2553.

NOTES

 getaddrinfo() supports the address%scope-id notation for specifying the

 IPv6 scope-ID.

 AI_ADDRCONFIG, AI_ALL, and AI_V4MAPPED are available since glibc 2.3.3.

 AI_NUMERICSERV is available since glibc 2.3.4.

 According to POSIX.1, specifying hints as NULL should cause ai_flags to

 be assumed as 0. The GNU C library instead assumes a value of

 (AI_V4MAPPED | AI_ADDRCONFIG) for this case, since this value is con?

 sidered an improvement on the specification.

EXAMPLES

 The following programs demonstrate the use of getaddrinfo(), gai_str?

 error(), freeaddrinfo(), and getnameinfo(3). The programs are an echo

 server and client for UDP datagrams.

 Server program

 #include <sys/types.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <unistd.h>

 #include <string.h>

 #include <sys/socket.h>

 #include <netdb.h> Page 8/13

 #define BUF_SIZE 500

 int

 main(int argc, char *argv[])

 {

 struct addrinfo hints;

 struct addrinfo *result, *rp;

 int sfd, s;

 struct sockaddr_storage peer_addr;

 socklen_t peer_addr_len;

 ssize_t nread;

 char buf[BUF_SIZE];

 if (argc != 2) {

 fprintf(stderr, "Usage: %s port\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 memset(&hints, 0, sizeof(hints));

 hints.ai_family = AF_UNSPEC; /* Allow IPv4 or IPv6 */

 hints.ai_socktype = SOCK_DGRAM; /* Datagram socket */

 hints.ai_flags = AI_PASSIVE; /* For wildcard IP address */

 hints.ai_protocol = 0; /* Any protocol */

 hints.ai_canonname = NULL;

 hints.ai_addr = NULL;

 hints.ai_next = NULL;

 s = getaddrinfo(NULL, argv[1], &hints, &result);

 if (s != 0) {

 fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(s));

 exit(EXIT_FAILURE);

 }

 /* getaddrinfo() returns a list of address structures.

 Try each address until we successfully bind(2).

 If socket(2) (or bind(2)) fails, we (close the socket

 and) try the next address. */

 for (rp = result; rp != NULL; rp = rp->ai_next) { Page 9/13

 sfd = socket(rp->ai_family, rp->ai_socktype,

 rp->ai_protocol);

 if (sfd == -1)

 continue;

 if (bind(sfd, rp->ai_addr, rp->ai_addrlen) == 0)

 break; /* Success */

 close(sfd);

 }

 freeaddrinfo(result); /* No longer needed */

 if (rp == NULL) { /* No address succeeded */

 fprintf(stderr, "Could not bind\n");

 exit(EXIT_FAILURE);

 }

 /* Read datagrams and echo them back to sender */

 for (;;) {

 peer_addr_len = sizeof(peer_addr);

 nread = recvfrom(sfd, buf, BUF_SIZE, 0,

 (struct sockaddr *) &peer_addr, &peer_addr_len);

 if (nread == -1)

 continue; /* Ignore failed request */

 char host[NI_MAXHOST], service[NI_MAXSERV];

 s = getnameinfo((struct sockaddr *) &peer_addr,

 peer_addr_len, host, NI_MAXHOST,

 service, NI_MAXSERV, NI_NUMERICSERV);

 if (s == 0)

 printf("Received %zd bytes from %s:%s\n",

 nread, host, service);

 else

 fprintf(stderr, "getnameinfo: %s\n", gai_strerror(s));

 if (sendto(sfd, buf, nread, 0,

 (struct sockaddr *) &peer_addr,

 peer_addr_len) != nread)

 fprintf(stderr, "Error sending response\n"); Page 10/13

 }

 }

 Client program

 #include <sys/types.h>

 #include <sys/socket.h>

 #include <netdb.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <unistd.h>

 #include <string.h>

 #define BUF_SIZE 500

 int

 main(int argc, char *argv[])

 {

 struct addrinfo hints;

 struct addrinfo *result, *rp;

 int sfd, s;

 size_t len;

 ssize_t nread;

 char buf[BUF_SIZE];

 if (argc < 3) {

 fprintf(stderr, "Usage: %s host port msg...\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 /* Obtain address(es) matching host/port */

 memset(&hints, 0, sizeof(hints));

 hints.ai_family = AF_UNSPEC; /* Allow IPv4 or IPv6 */

 hints.ai_socktype = SOCK_DGRAM; /* Datagram socket */

 hints.ai_flags = 0;

 hints.ai_protocol = 0; /* Any protocol */

 s = getaddrinfo(argv[1], argv[2], &hints, &result);

 if (s != 0) {

 fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(s)); Page 11/13

 exit(EXIT_FAILURE);

 }

 /* getaddrinfo() returns a list of address structures.

 Try each address until we successfully connect(2).

 If socket(2) (or connect(2)) fails, we (close the socket

 and) try the next address. */

 for (rp = result; rp != NULL; rp = rp->ai_next) {

 sfd = socket(rp->ai_family, rp->ai_socktype,

 rp->ai_protocol);

 if (sfd == -1)

 continue;

 if (connect(sfd, rp->ai_addr, rp->ai_addrlen) != -1)

 break; /* Success */

 close(sfd);

 }

 freeaddrinfo(result); /* No longer needed */

 if (rp == NULL) { /* No address succeeded */

 fprintf(stderr, "Could not connect\n");

 exit(EXIT_FAILURE);

 }

 /* Send remaining command-line arguments as separate

 datagrams, and read responses from server */

 for (int j = 3; j < argc; j++) {

 len = strlen(argv[j]) + 1;

 /* +1 for terminating null byte */

 if (len > BUF_SIZE) {

 fprintf(stderr,

 "Ignoring long message in argument %d\n", j);

 continue;

 }

 if (write(sfd, argv[j], len) != len) {

 fprintf(stderr, "partial/failed write\n");

 exit(EXIT_FAILURE); Page 12/13

 }

 nread = read(sfd, buf, BUF_SIZE);

 if (nread == -1) {

 perror("read");

 exit(EXIT_FAILURE);

 }

 printf("Received %zd bytes: %s\n", nread, buf);

 }

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 getaddrinfo_a(3), gethostbyname(3), getnameinfo(3), inet(3),

 gai.conf(5), hostname(7), ip(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

GNU 2020-11-01 GETADDRINFO(3)

Page 13/13

