
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'gethostbyname2_r.3' command

$ man gethostbyname2_r.3

GETHOSTBYNAME(3) Linux Programmer's Manual GETHOSTBYNAME(3)

NAME

 gethostbyname, gethostbyaddr, sethostent, gethostent, endhostent, h_er?

 rno, herror, hstrerror, gethostbyaddr_r, gethostbyname2, gethostby?

 name2_r, gethostbyname_r, gethostent_r - get network host entry

SYNOPSIS

 #include <netdb.h>

 extern int h_errno;

 struct hostent *gethostbyname(const char *name);

 #include <sys/socket.h> /* for AF_INET */

 struct hostent *gethostbyaddr(const void *addr,

 socklen_t len, int type);

 void sethostent(int stayopen);

 void endhostent(void);

 void herror(const char *s);

 const char *hstrerror(int err);

 /* System V/POSIX extension */

 struct hostent *gethostent(void);

 /* GNU extensions */

 struct hostent *gethostbyname2(const char *name, int af);

 int gethostent_r(

 struct hostent *ret, char *buf, size_t buflen,

 struct hostent **result, int *h_errnop); Page 1/8

 int gethostbyaddr_r(const void *addr, socklen_t len, int type,

 struct hostent *ret, char *buf, size_t buflen,

 struct hostent **result, int *h_errnop);

 int gethostbyname_r(const char *name,

 struct hostent *ret, char *buf, size_t buflen,

 struct hostent **result, int *h_errnop);

 int gethostbyname2_r(const char *name, int af,

 struct hostent *ret, char *buf, size_t buflen,

 struct hostent **result, int *h_errnop);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 gethostbyname2(), gethostent_r(), gethostbyaddr_r(), gethostbyname_r(),

 gethostbyname2_r():

 Since glibc 2.19:

 _DEFAULT_SOURCE

 Glibc versions up to and including 2.19:

 _BSD_SOURCE || _SVID_SOURCE

 herror(), hstrerror():

 Since glibc 2.19:

 _DEFAULT_SOURCE

 Glibc 2.8 to 2.19:

 _BSD_SOURCE || _SVID_SOURCE

 Before glibc 2.8:

 none

 h_errno:

 Since glibc 2.19

 _DEFAULT_SOURCE || _POSIX_C_SOURCE < 200809L

 Glibc 2.12 to 2.19:

 _BSD_SOURCE || _SVID_SOURCE || _POSIX_C_SOURCE < 200809L

 Before glibc 2.12:

 none

DESCRIPTION

 The gethostbyname*(), gethostbyaddr*(), herror(), and hstrerror() func?

 tions are obsolete. Applications should use getaddrinfo(3), getname? Page 2/8

 info(3), and gai_strerror(3) instead.

 The gethostbyname() function returns a structure of type hostent for

 the given host name. Here name is either a hostname or an IPv4 address

 in standard dot notation (as for inet_addr(3)). If name is an IPv4 ad?

 dress, no lookup is performed and gethostbyname() simply copies name

 into the h_name field and its struct in_addr equivalent into the

 h_addr_list[0] field of the returned hostent structure. If name

 doesn't end in a dot and the environment variable HOSTALIASES is set,

 the alias file pointed to by HOSTALIASES will first be searched for

 name (see hostname(7) for the file format). The current domain and its

 parents are searched unless name ends in a dot.

 The gethostbyaddr() function returns a structure of type hostent for

 the given host address addr of length len and address type type. Valid

 address types are AF_INET and AF_INET6. The host address argument is a

 pointer to a struct of a type depending on the address type, for exam?

 ple a struct in_addr * (probably obtained via a call to inet_addr(3))

 for address type AF_INET.

 The sethostent() function specifies, if stayopen is true (1), that a

 connected TCP socket should be used for the name server queries and

 that the connection should remain open during successive queries. Oth?

 erwise, name server queries will use UDP datagrams.

 The endhostent() function ends the use of a TCP connection for name

 server queries.

 The (obsolete) herror() function prints the error message associated

 with the current value of h_errno on stderr.

 The (obsolete) hstrerror() function takes an error number (typically

 h_errno) and returns the corresponding message string.

 The domain name queries carried out by gethostbyname() and gethost?

 byaddr() rely on the Name Service Switch (nsswitch.conf(5)) configured

 sources or a local name server (named(8)). The default action is to

 query the Name Service Switch (nsswitch.conf(5)) configured sources,

 failing that, a local name server (named(8)).

 Historical Page 3/8

 The nsswitch.conf(5) file is the modern way of controlling the order of

 host lookups.

 In glibc 2.4 and earlier, the order keyword was used to control the or?

 der of host lookups as defined in /etc/host.conf (host.conf(5)).

 The hostent structure is defined in <netdb.h> as follows:

 struct hostent {

 char *h_name; /* official name of host */

 char **h_aliases; /* alias list */

 int h_addrtype; /* host address type */

 int h_length; /* length of address */

 char **h_addr_list; /* list of addresses */

 }

 #define h_addr h_addr_list[0] /* for backward compatibility */

 The members of the hostent structure are:

 h_name The official name of the host.

 h_aliases

 An array of alternative names for the host, terminated by a null

 pointer.

 h_addrtype

 The type of address; always AF_INET or AF_INET6 at present.

 h_length

 The length of the address in bytes.

 h_addr_list

 An array of pointers to network addresses for the host (in net?

 work byte order), terminated by a null pointer.

 h_addr The first address in h_addr_list for backward compatibility.

RETURN VALUE

 The gethostbyname() and gethostbyaddr() functions return the hostent

 structure or a null pointer if an error occurs. On error, the h_errno

 variable holds an error number. When non-NULL, the return value may

 point at static data, see the notes below.

ERRORS

 The variable h_errno can have the following values: Page 4/8

 HOST_NOT_FOUND

 The specified host is unknown.

 NO_DATA

 The requested name is valid but does not have an IP address.

 Another type of request to the name server for this domain may

 return an answer. The constant NO_ADDRESS is a synonym for

 NO_DATA.

 NO_RECOVERY

 A nonrecoverable name server error occurred.

 TRY_AGAIN

 A temporary error occurred on an authoritative name server. Try

 again later.

FILES

 /etc/host.conf

 resolver configuration file

 /etc/hosts

 host database file

 /etc/nsswitch.conf

 name service switch configuration

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ???

 ?Interface ? Attribute ? Value ?

 ???

 ?gethostbyname() ? Thread safety ? MT-Unsafe race:hostbyname env ?

 ? ? ? locale ?

 ???

 ?gethostbyaddr() ? Thread safety ? MT-Unsafe race:hostbyaddr env ?

 ? ? ? locale ?

 ???

 ?sethostent(), ? Thread safety ? MT-Unsafe race:hostent env ?

 ?endhostent(), ? ? locale ? Page 5/8

 ?gethostent_r() ? ? ?

 ???

 ?herror(), ? Thread safety ? MT-Safe ?

 ?hstrerror() ? ? ?

 ???

 ?gethostent() ? Thread safety ? MT-Unsafe race:hostent ?

 ? ? ? race:hostentbuf env locale ?

 ???

 ?gethostbyname2() ? Thread safety ? MT-Unsafe race:hostbyname2 ?

 ? ? ? env locale ?

 ???

 ?gethostbyaddr_r(), ? Thread safety ? MT-Safe env locale ?

 ?gethostbyname_r(), ? ? ?

 ?gethostbyname2_r() ? ? ?

 ???

 In the above table, hostent in race:hostent signifies that if any of

 the functions sethostent(), gethostent(), gethostent_r(), or endhos?

 tent() are used in parallel in different threads of a program, then

 data races could occur.

CONFORMING TO

 POSIX.1-2001 specifies gethostbyname(), gethostbyaddr(), sethostent(),

 endhostent(), gethostent(), and h_errno; gethostbyname(), gethost?

 byaddr(), and h_errno are marked obsolescent in that standard.

 POSIX.1-2008 removes the specifications of gethostbyname(), gethost?

 byaddr(), and h_errno, recommending the use of getaddrinfo(3) and get?

 nameinfo(3) instead.

NOTES

 The functions gethostbyname() and gethostbyaddr() may return pointers

 to static data, which may be overwritten by later calls. Copying the

 struct hostent does not suffice, since it contains pointers; a deep

 copy is required.

 In the original BSD implementation the len argument of gethostbyname()

 was an int. The SUSv2 standard is buggy and declares the len argument Page 6/8

 of gethostbyaddr() to be of type size_t. (That is wrong, because it

 has to be int, and size_t is not. POSIX.1-2001 makes it socklen_t,

 which is OK.) See also accept(2).

 The BSD prototype for gethostbyaddr() uses const char * for the first

 argument.

 System V/POSIX extension

 POSIX requires the gethostent() call, which should return the next en?

 try in the host data base. When using DNS/BIND this does not make much

 sense, but it may be reasonable if the host data base is a file that

 can be read line by line. On many systems, a routine of this name

 reads from the file /etc/hosts. It may be available only when the li?

 brary was built without DNS support. The glibc version will ignore

 ipv6 entries. This function is not reentrant, and glibc adds a reen?

 trant version gethostent_r().

 GNU extensions

 Glibc2 also has a gethostbyname2() that works like gethostbyname(), but

 permits to specify the address family to which the address must belong.

 Glibc2 also has reentrant versions gethostent_r(), gethostbyaddr_r(),

 gethostbyname_r(), and gethostbyname2_r(). The caller supplies a hos?

 tent structure ret which will be filled in on success, and a temporary

 work buffer buf of size buflen. After the call, result will point to

 the result on success. In case of an error or if no entry is found re?

 sult will be NULL. The functions return 0 on success and a nonzero er?

 ror number on failure. In addition to the errors returned by the non?

 reentrant versions of these functions, if buf is too small, the func?

 tions will return ERANGE, and the call should be retried with a larger

 buffer. The global variable h_errno is not modified, but the address

 of a variable in which to store error numbers is passed in h_errnop.

BUGS

 gethostbyname() does not recognize components of a dotted IPv4 address

 string that are expressed in hexadecimal.

SEE ALSO

 getaddrinfo(3), getnameinfo(3), inet(3), inet_ntop(3), inet_pton(3), Page 7/8

 resolver(3), hosts(5), nsswitch.conf(5), hostname(7), named(8)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

 2020-12-21 GETHOSTBYNAME(3)

Page 8/8

