
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'getppid.2' command

$ man getppid.2

GETPID(2) Linux Programmer's Manual GETPID(2)

NAME

 getpid, getppid - get process identification

SYNOPSIS

 #include <sys/types.h>

 #include <unistd.h>

 pid_t getpid(void);

 pid_t getppid(void);

DESCRIPTION

 getpid() returns the process ID (PID) of the calling process. (This is

 often used by routines that generate unique temporary filenames.)

 getppid() returns the process ID of the parent of the calling process.

 This will be either the ID of the process that created this process us?

 ing fork(), or, if that process has already terminated, the ID of the

 process to which this process has been reparented (either init(1) or a

 "subreaper" process defined via the prctl(2) PR_SET_CHILD_SUBREAPER op?

 eration).

ERRORS

 These functions are always successful.

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, 4.3BSD, SVr4.

NOTES

 If the caller's parent is in a different PID namespace (see pid_name? Page 1/3

 spaces(7)), getppid() returns 0.

 From a kernel perspective, the PID (which is shared by all of the

 threads in a multithreaded process) is sometimes also known as the

 thread group ID (TGID). This contrasts with the kernel thread ID

 (TID), which is unique for each thread. For further details, see get?

 tid(2) and the discussion of the CLONE_THREAD flag in clone(2).

 C library/kernel differences

 From glibc version 2.3.4 up to and including version 2.24, the glibc

 wrapper function for getpid() cached PIDs, with the goal of avoiding

 additional system calls when a process calls getpid() repeatedly. Nor?

 mally this caching was invisible, but its correct operation relied on

 support in the wrapper functions for fork(2), vfork(2), and clone(2):

 if an application bypassed the glibc wrappers for these system calls by

 using syscall(2), then a call to getpid() in the child would return the

 wrong value (to be precise: it would return the PID of the parent

 process). In addition, there were cases where getpid() could return

 the wrong value even when invoking clone(2) via the glibc wrapper func?

 tion. (For a discussion of one such case, see BUGS in clone(2).) Fur?

 thermore, the complexity of the caching code had been the source of a

 few bugs within glibc over the years.

 Because of the aforementioned problems, since glibc version 2.25, the

 PID cache is removed: calls to getpid() always invoke the actual system

 call, rather than returning a cached value.

 On Alpha, instead of a pair of getpid() and getppid() system calls, a

 single getxpid() system call is provided, which returns a pair of PID

 and parent PID. The glibc getpid() and getppid() wrapper functions

 transparently deal with this. See syscall(2) for details regarding

 register mapping.

SEE ALSO

 clone(2), fork(2), gettid(2), kill(2), exec(3), mkstemp(3), tempnam(3),

 tmpfile(3), tmpnam(3), credentials(7), pid_namespaces(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A Page 2/3

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 GETPID(2)

Page 3/3

