
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'getprotobynumber_r.3' command

$ man getprotobynumber_r.3

GETPROTOENT_R(3) Linux Programmer's Manual GETPROTOENT_R(3)

NAME

 getprotoent_r, getprotobyname_r, getprotobynumber_r - get protocol en?

 try (reentrant)

SYNOPSIS

 #include <netdb.h>

 int getprotoent_r(struct protoent *result_buf, char *buf,

 size_t buflen, struct protoent **result);

 int getprotobyname_r(const char *name,

 struct protoent *result_buf, char *buf,

 size_t buflen, struct protoent **result);

 int getprotobynumber_r(int proto,

 struct protoent *result_buf, char *buf,

 size_t buflen, struct protoent **result);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 getprotoent_r(), getprotobyname_r(), getprotobynumber_r():

 Since glibc 2.19:

 _DEFAULT_SOURCE

 Glibc 2.19 and earlier:

 _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION

 The getprotoent_r(), getprotobyname_r(), and getprotobynumber_r() func?

 tions are the reentrant equivalents of, respectively, getprotoent(3), Page 1/5

 getprotobyname(3), and getprotobynumber(3). They differ in the way

 that the protoent structure is returned, and in the function calling

 signature and return value. This manual page describes just the dif?

 ferences from the nonreentrant functions.

 Instead of returning a pointer to a statically allocated protoent

 structure as the function result, these functions copy the structure

 into the location pointed to by result_buf.

 The buf array is used to store the string fields pointed to by the re?

 turned protoent structure. (The nonreentrant functions allocate these

 strings in static storage.) The size of this array is specified in bu?

 flen. If buf is too small, the call fails with the error ERANGE, and

 the caller must try again with a larger buffer. (A buffer of length

 1024 bytes should be sufficient for most applications.)

 If the function call successfully obtains a protocol record, then *re?

 sult is set pointing to result_buf; otherwise, *result is set to NULL.

RETURN VALUE

 On success, these functions return 0. On error, they return one of the

 positive error numbers listed in ERRORS.

 On error, record not found (getprotobyname_r(), getprotobynumber_r()),

 or end of input (getprotoent_r()) result is set to NULL.

ERRORS

 ENOENT (getprotoent_r()) No more records in database.

 ERANGE buf is too small. Try again with a larger buffer (and increased

 buflen).

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?getprotoent_r(), ? Thread safety ? MT-Safe locale ?

 ?getprotobyname_r(), ? ? ?

 ?getprotobynumber_r() ? ? ? Page 2/5

 ??

CONFORMING TO

 These functions are GNU extensions. Functions with similar names exist

 on some other systems, though typically with different calling signa?

 tures.

EXAMPLES

 The program below uses getprotobyname_r() to retrieve the protocol

 record for the protocol named in its first command-line argument. If a

 second (integer) command-line argument is supplied, it is used as the

 initial value for buflen; if getprotobyname_r() fails with the error

 ERANGE, the program retries with larger buffer sizes. The following

 shell session shows a couple of sample runs:

 $./a.out tcp 1

 ERANGE! Retrying with larger buffer

 getprotobyname_r() returned: 0 (success) (buflen=78)

 p_name=tcp; p_proto=6; aliases=TCP

 $./a.out xxx 1

 ERANGE! Retrying with larger buffer

 getprotobyname_r() returned: 0 (success) (buflen=100)

 Call failed/record not found

 Program source

 #define _GNU_SOURCE

 #include <ctype.h>

 #include <netdb.h>

 #include <stdlib.h>

 #include <stdio.h>

 #include <errno.h>

 #include <string.h>

 #define MAX_BUF 10000

 int

 main(int argc, char *argv[])

 {

 int buflen, erange_cnt, s; Page 3/5

 struct protoent result_buf;

 struct protoent *result;

 char buf[MAX_BUF];

 if (argc < 2) {

 printf("Usage: %s proto-name [buflen]\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 buflen = 1024;

 if (argc > 2)

 buflen = atoi(argv[2]);

 if (buflen > MAX_BUF) {

 printf("Exceeded buffer limit (%d)\n", MAX_BUF);

 exit(EXIT_FAILURE);

 }

 erange_cnt = 0;

 do {

 s = getprotobyname_r(argv[1], &result_buf,

 buf, buflen, &result);

 if (s == ERANGE) {

 if (erange_cnt == 0)

 printf("ERANGE! Retrying with larger buffer\n");

 erange_cnt++;

 /* Increment a byte at a time so we can see exactly

 what size buffer was required */

 buflen++;

 if (buflen > MAX_BUF) {

 printf("Exceeded buffer limit (%d)\n", MAX_BUF);

 exit(EXIT_FAILURE);

 }

 }

 } while (s == ERANGE);

 printf("getprotobyname_r() returned: %s (buflen=%d)\n",

 (s == 0) ? "0 (success)" : (s == ENOENT) ? "ENOENT" : Page 4/5

 strerror(s), buflen);

 if (s != 0 || result == NULL) {

 printf("Call failed/record not found\n");

 exit(EXIT_FAILURE);

 }

 printf("p_name=%s; p_proto=%d; aliases=",

 result_buf.p_name, result_buf.p_proto);

 for (char **p = result_buf.p_aliases; *p != NULL; p++)

 printf("%s ", *p);

 printf("\n");

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 getprotoent(3), protocols(5)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

GNU 2020-11-01 GETPROTOENT_R(3)

Page 5/5

