r*‘ ,

University

FPDF Library

RedHat
Enterprise Linux

PDF generator
i,

g

Manual Pages

Full credit is given to the above companies including the 0S
that this PDF file was generated!

Red Hat Enterprise Linux Release 9.2 Manual Pages on 'getservent_r.3' command

$ man getservent_r.3

GETSERVENT_R(3) Linux Programmer's Manual GETSERVENT_R(3)
NAME
getservent_r, getservbyname_r, getservbyport r - get service entry
(reentrant)
SYNOPSIS
#include <netdb.h>
int getservent_r(struct servent *result_buf, char *buf,
size_t buflen, struct servent **result);
int getservbyname_r(const char *name, const char *proto,
struct servent *result_buf, char *buf,
size_t buflen, struct servent **result);
int getservbyport_r(int port, const char *proto,
struct servent *result_buf, char *buf,
size_t buflen, struct servent **result);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):
getservent_r(), getservbyname_r(), getservbyport_r():
Since glibc 2.19:
_DEFAULT_SOURCE
Glibc 2.19 and earlier:
_BSD_SOURCE || _SVID_SOURCE
DESCRIPTION
The getservent_r(), getservbyname_r(), and getservbyport_r() functions

are the reentrant equivalents of, respectively, getservent(3), get? Page 1/5

servbyname(3), and getservbyport(3). They differ in the way that the
servent structure is returned, and in the function calling signature
and return value. This manual page describes just the differences from
the nonreentrant functions.
Instead of returning a pointer to a statically allocated servent struc?
ture as the function result, these functions copy the structure into
the location pointed to by result_buf.
The buf array is used to store the string fields pointed to by the re?
turned servent structure. (The nonreentrant functions allocate these
strings in static storage.) The size of this array is specified in bu?
flen. If buf is too small, the call fails with the error ERANGE, and
the caller must try again with a larger buffer. (A buffer of length
1024 bytes should be sufficient for most applications.)
If the function call successfully obtains a service record, then *re?
sult is set pointing to result_buf; otherwise, *result is set to NULL.
RETURN VALUE
On success, these functions return 0. On error, they return one of the
positive error numbers listed in errors.
On error, record not found (getservbyname_r(), getservbyport r()), or
end of input (getservent_r()) result is set to NULL.
ERRORS
ENOENT (getservent_r()) No more records in database.
ERANGE buf is too small. Try again with a larger buffer (and increased
buflen).
ATTRIBUTES
For an explanation of the terms used in this section, see at?

tributes(7).

PP 72?2???7????????7???7??7??7?7777?77

?Interface ? Attribute ? Value ?

PPV 70??????7??????7???7??7??7?777?77

?getservent_r(), ? Thread safety ? MT-Safe locale ?
?getservbyname_r(), ? ? ?

?getservbyport_r() ? ? ? Page 2/5

PP 7?????7???????7???7??7?7?7?7?77?77?77

CONFORMING TO
These functions are GNU extensions. Functions with similar names exist
on some other systems, though typically with different calling signa?
tures.
EXAMPLES
The program below uses getservbyport_r() to retrieve the service record
for the port and protocol named in its first command-line argument. If
a third (integer) command-line argument is supplied, it is used as the
initial value for buflen; if getservbyport_r() fails with the error
ERANGE, the program retries with larger buffer sizes. The following
shell session shows a couple of sample runs:
$.Jaout7tepl
ERANGE! Retrying with larger buffer
getservbyport_r() returned: 0 (success) (buflen=87)
s_name=echo; s_proto=tcp; s_port=7; aliases=
$.Ja.out 77777 tcp
getservbyport_r() returned: 0 (success) (buflen=1024)
Call failed/record not found
Program source
#define _GNU_SOURCE
#include <ctype.h>
#include <netdb.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#define MAX_BUF 10000
int
main(int argc, char *argv[])
{

int buflen, erange_cnt, port, s;

struct servent result_buf; Page 3/5

struct servent *result;
char buff[MAX_BUF];
char *protop;

if (argc < 3) {

printf("Usage: %s port-num proto-name [buflen]\n", argv[0]);

exit(EXIT_FAILURE);
}
port = htons(atoi(argv[1]));
protop = (strcmp(argv[2], "null") == 0 ||
stremp(argv[2], "NULL") == 0) ? NULL : argv[2];
buflen = 1024;
if (argc > 3)
buflen = atoi(argv[3]);
if (ouflen > MAX_BUF) {
printf("Exceeded buffer limit (%d)\n", MAX_BUF);
exit(EXIT_FAILURE);
}
erange_cnt = 0;
do {
s = getservbyport_r(port, protop, &result_buf,
buf, buflen, &result);
if (s == ERANGE) {
if (erange_cnt == 0)
printf("ERANGE! Retrying with larger buffer\n");
erange_cnt++;
[* Increment a byte at a time so we can see exactly
what size buffer was required */
buflen++;

if (buflen > MAX_BUF) {

printf("Exceeded buffer limit (%d)\n", MAX_BUF);

exit(EXIT_FAILURE);

Page 4/5

}

} while (s == ERANGE);

printf("getservbyport_r() returned: %s (buflen=%d)\n",

(s == 0) ? "0 (success)" : (s == ENOENT) ? "ENOENT" :

strerror(s), buflen);
if (s!=0 || result == NULL) {
printf("Call failed/record not found\n");

exit(EXIT_FAILURE);

}

printf("s_name=9%s; s_proto=%s; s_port=%d; aliases="'

result_buf.s_name, result_buf.s_proto,
ntohs(result_buf.s_port));
for (char **p = result_buf.s_aliases; *p != NULL; p++)
printf("%s ", *p);
printf("\n");

exit(EXIT_SUCCESS);

SEE ALSO

getservent(3), services(5)

COLOPHON

This page is part of release 5.10 of the Linux man-pages project. A

description of the project, information about reporting bugs, and the

GNU

latest version of this page, can be found at
https://lwww.kernel.org/doc/man-pages/.
2020-11-01 GETSERVENT_R(3)

Page 5/5

