
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'getservent_r.3' command

$ man getservent_r.3

GETSERVENT_R(3) Linux Programmer's Manual GETSERVENT_R(3)

NAME

 getservent_r, getservbyname_r, getservbyport_r - get service entry

 (reentrant)

SYNOPSIS

 #include <netdb.h>

 int getservent_r(struct servent *result_buf, char *buf,

 size_t buflen, struct servent **result);

 int getservbyname_r(const char *name, const char *proto,

 struct servent *result_buf, char *buf,

 size_t buflen, struct servent **result);

 int getservbyport_r(int port, const char *proto,

 struct servent *result_buf, char *buf,

 size_t buflen, struct servent **result);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 getservent_r(), getservbyname_r(), getservbyport_r():

 Since glibc 2.19:

 _DEFAULT_SOURCE

 Glibc 2.19 and earlier:

 _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION

 The getservent_r(), getservbyname_r(), and getservbyport_r() functions

 are the reentrant equivalents of, respectively, getservent(3), get? Page 1/5

 servbyname(3), and getservbyport(3). They differ in the way that the

 servent structure is returned, and in the function calling signature

 and return value. This manual page describes just the differences from

 the nonreentrant functions.

 Instead of returning a pointer to a statically allocated servent struc?

 ture as the function result, these functions copy the structure into

 the location pointed to by result_buf.

 The buf array is used to store the string fields pointed to by the re?

 turned servent structure. (The nonreentrant functions allocate these

 strings in static storage.) The size of this array is specified in bu?

 flen. If buf is too small, the call fails with the error ERANGE, and

 the caller must try again with a larger buffer. (A buffer of length

 1024 bytes should be sufficient for most applications.)

 If the function call successfully obtains a service record, then *re?

 sult is set pointing to result_buf; otherwise, *result is set to NULL.

RETURN VALUE

 On success, these functions return 0. On error, they return one of the

 positive error numbers listed in errors.

 On error, record not found (getservbyname_r(), getservbyport_r()), or

 end of input (getservent_r()) result is set to NULL.

ERRORS

 ENOENT (getservent_r()) No more records in database.

 ERANGE buf is too small. Try again with a larger buffer (and increased

 buflen).

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?getservent_r(), ? Thread safety ? MT-Safe locale ?

 ?getservbyname_r(), ? ? ?

 ?getservbyport_r() ? ? ? Page 2/5

 ??

CONFORMING TO

 These functions are GNU extensions. Functions with similar names exist

 on some other systems, though typically with different calling signa?

 tures.

EXAMPLES

 The program below uses getservbyport_r() to retrieve the service record

 for the port and protocol named in its first command-line argument. If

 a third (integer) command-line argument is supplied, it is used as the

 initial value for buflen; if getservbyport_r() fails with the error

 ERANGE, the program retries with larger buffer sizes. The following

 shell session shows a couple of sample runs:

 $./a.out 7 tcp 1

 ERANGE! Retrying with larger buffer

 getservbyport_r() returned: 0 (success) (buflen=87)

 s_name=echo; s_proto=tcp; s_port=7; aliases=

 $./a.out 77777 tcp

 getservbyport_r() returned: 0 (success) (buflen=1024)

 Call failed/record not found

 Program source

 #define _GNU_SOURCE

 #include <ctype.h>

 #include <netdb.h>

 #include <stdlib.h>

 #include <stdio.h>

 #include <errno.h>

 #include <string.h>

 #define MAX_BUF 10000

 int

 main(int argc, char *argv[])

 {

 int buflen, erange_cnt, port, s;

 struct servent result_buf; Page 3/5

 struct servent *result;

 char buf[MAX_BUF];

 char *protop;

 if (argc < 3) {

 printf("Usage: %s port-num proto-name [buflen]\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 port = htons(atoi(argv[1]));

 protop = (strcmp(argv[2], "null") == 0 ||

 strcmp(argv[2], "NULL") == 0) ? NULL : argv[2];

 buflen = 1024;

 if (argc > 3)

 buflen = atoi(argv[3]);

 if (buflen > MAX_BUF) {

 printf("Exceeded buffer limit (%d)\n", MAX_BUF);

 exit(EXIT_FAILURE);

 }

 erange_cnt = 0;

 do {

 s = getservbyport_r(port, protop, &result_buf,

 buf, buflen, &result);

 if (s == ERANGE) {

 if (erange_cnt == 0)

 printf("ERANGE! Retrying with larger buffer\n");

 erange_cnt++;

 /* Increment a byte at a time so we can see exactly

 what size buffer was required */

 buflen++;

 if (buflen > MAX_BUF) {

 printf("Exceeded buffer limit (%d)\n", MAX_BUF);

 exit(EXIT_FAILURE);

 }

 } Page 4/5

 } while (s == ERANGE);

 printf("getservbyport_r() returned: %s (buflen=%d)\n",

 (s == 0) ? "0 (success)" : (s == ENOENT) ? "ENOENT" :

 strerror(s), buflen);

 if (s != 0 || result == NULL) {

 printf("Call failed/record not found\n");

 exit(EXIT_FAILURE);

 }

 printf("s_name=%s; s_proto=%s; s_port=%d; aliases=",

 result_buf.s_name, result_buf.s_proto,

 ntohs(result_buf.s_port));

 for (char **p = result_buf.s_aliases; *p != NULL; p++)

 printf("%s ", *p);

 printf("\n");

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 getservent(3), services(5)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

GNU 2020-11-01 GETSERVENT_R(3)

Page 5/5

