
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'gmake.1' command

$ man gmake.1

MAKE(1) User Commands MAKE(1)

NAME

 make - GNU make utility to maintain groups of programs

SYNOPSIS

 make [OPTION]... [TARGET]...

DESCRIPTION

 The make utility will determine automatically which pieces of a large

 program need to be recompiled, and issue the commands to recompile

 them. The manual describes the GNU implementation of make, which was

 written by Richard Stallman and Roland McGrath, and is currently main?

 tained by Paul Smith. Our examples show C programs, since they are

 very common, but you can use make with any programming language whose

 compiler can be run with a shell command. In fact, make is not limited

 to programs. You can use it to describe any task where some files must

 be updated automatically from others whenever the others change.

 To prepare to use make, you must write a file called the makefile that

 describes the relationships among files in your program, and the states

 the commands for updating each file. In a program, typically the exe?

 cutable file is updated from object files, which are in turn made by

 compiling source files.

 Once a suitable makefile exists, each time you change some source

 files, this simple shell command:

 make Page 1/7

 suffices to perform all necessary recompilations. The make program

 uses the makefile description and the last-modification times of the

 files to decide which of the files need to be updated. For each of

 those files, it issues the commands recorded in the makefile.

 make executes commands in the makefile to update one or more target

 names, where name is typically a program. If no -f option is present,

 make will look for the makefiles GNUmakefile, makefile, and Makefile,

 in that order.

 Normally you should call your makefile either makefile or Makefile.

 (We recommend Makefile because it appears prominently near the begin?

 ning of a directory listing, right near other important files such as

 README.) The first name checked, GNUmakefile, is not recommended for

 most makefiles. You should use this name if you have a makefile that

 is specific to GNU make, and will not be understood by other versions

 of make. If makefile is '-', the standard input is read.

 make updates a target if it depends on prerequisite files that have

 been modified since the target was last modified, or if the target does

 not exist.

OPTIONS

 -b, -m

 These options are ignored for compatibility with other versions of

 make.

 -B, --always-make

 Unconditionally make all targets.

 -C dir, --directory=dir

 Change to directory dir before reading the makefiles or doing any?

 thing else. If multiple -C options are specified, each is inter?

 preted relative to the previous one: -C / -C etc is equivalent to

 -C /etc. This is typically used with recursive invocations of

 make.

 -d Print debugging information in addition to normal processing. The

 debugging information says which files are being considered for

 remaking, which file-times are being compared and with what re? Page 2/7

 sults, which files actually need to be remade, which implicit

 rules are considered and which are applied---everything interest?

 ing about how make decides what to do.

 --debug[=FLAGS]

 Print debugging information in addition to normal processing. If

 the FLAGS are omitted, then the behavior is the same as if -d was

 specified. FLAGS may be a for all debugging output (same as using

 -d), b for basic debugging, v for more verbose basic debugging, i

 for showing implicit rules, j for details on invocation of com?

 mands, and m for debugging while remaking makefiles. Use n to

 disable all previous debugging flags.

 -e, --environment-overrides

 Give variables taken from the environment precedence over vari?

 ables from makefiles.

 -E string, --eval string

 Interpret string using the eval function, before parsing any make?

 files.

 -f file, --file=file, --makefile=FILE

 Use file as a makefile.

 -i, --ignore-errors

 Ignore all errors in commands executed to remake files.

 -I dir, --include-dir=dir

 Specifies a directory dir to search for included makefiles. If

 several -I options are used to specify several directories, the

 directories are searched in the order specified. Unlike the argu?

 ments to other flags of make, directories given with -I flags may

 come directly after the flag: -Idir is allowed, as well as -I dir.

 This syntax is allowed for compatibility with the C preprocessor's

 -I flag.

 -j [jobs], --jobs[=jobs]

 Specifies the number of jobs (commands) to run simultaneously. If

 there is more than one -j option, the last one is effective. If

 the -j option is given without an argument, make will not limit Page 3/7

 the number of jobs that can run simultaneously.

 -k, --keep-going

 Continue as much as possible after an error. While the target

 that failed, and those that depend on it, cannot be remade, the

 other dependencies of these targets can be processed all the same.

 -l [load], --load-average[=load]

 Specifies that no new jobs (commands) should be started if there

 are others jobs running and the load average is at least load (a

 floating-point number). With no argument, removes a previous load

 limit.

 -L, --check-symlink-times

 Use the latest mtime between symlinks and target.

 -n, --just-print, --dry-run, --recon

 Print the commands that would be executed, but do not execute them

 (except in certain circumstances).

 -o file, --old-file=file, --assume-old=file

 Do not remake the file file even if it is older than its dependen?

 cies, and do not remake anything on account of changes in file.

 Essentially the file is treated as very old and its rules are ig?

 nored.

 -O[type], --output-sync[=type]

 When running multiple jobs in parallel with -j, ensure the output

 of each job is collected together rather than interspersed with

 output from other jobs. If type is not specified or is target the

 output from the entire recipe for each target is grouped together.

 If type is line the output from each command line within a recipe

 is grouped together. If type is recurse output from an entire re?

 cursive make is grouped together. If type is none output synchro?

 nization is disabled.

 -p, --print-data-base

 Print the data base (rules and variable values) that results from

 reading the makefiles; then execute as usual or as otherwise spec?

 ified. This also prints the version information given by the -v Page 4/7

 switch (see below). To print the data base without trying to re?

 make any files, use make -p -f/dev/null.

 -q, --question

 ``Question mode''. Do not run any commands, or print anything;

 just return an exit status that is zero if the specified targets

 are already up to date, nonzero otherwise.

 -r, --no-builtin-rules

 Eliminate use of the built-in implicit rules. Also clear out the

 default list of suffixes for suffix rules.

 -R, --no-builtin-variables

 Don't define any built-in variables.

 -s, --silent, --quiet

 Silent operation; do not print the commands as they are executed.

 --no-silent

 Cancel the effect of the -s option.

 -S, --no-keep-going, --stop

 Cancel the effect of the -k option.

 -t, --touch

 Touch files (mark them up to date without really changing them)

 instead of running their commands. This is used to pretend that

 the commands were done, in order to fool future invocations of

 make.

 --trace

 Information about the disposition of each target is printed (why

 the target is being rebuilt and what commands are run to rebuild

 it).

 -v, --version

 Print the version of the make program plus a copyright, a list of

 authors and a notice that there is no warranty.

 -w, --print-directory

 Print a message containing the working directory before and after

 other processing. This may be useful for tracking down errors

 from complicated nests of recursive make commands. Page 5/7

 --no-print-directory

 Turn off -w, even if it was turned on implicitly.

 -W file, --what-if=file, --new-file=file, --assume-new=file

 Pretend that the target file has just been modified. When used

 with the -n flag, this shows you what would happen if you were to

 modify that file. Without -n, it is almost the same as running a

 touch command on the given file before running make, except that

 the modification time is changed only in the imagination of make.

 --warn-undefined-variables

 Warn when an undefined variable is referenced.

EXIT STATUS

 GNU make exits with a status of zero if all makefiles were successfully

 parsed and no targets that were built failed. A status of one will be

 returned if the -q flag was used and make determines that a target

 needs to be rebuilt. A status of two will be returned if any errors

 were encountered.

SEE ALSO

 The full documentation for make is maintained as a Texinfo manual. If

 the info and make programs are properly installed at your site, the

 command

 info make

 should give you access to the complete manual.

BUGS

 See the chapter ``Problems and Bugs'' in The GNU Make Manual.

AUTHOR

 This manual page contributed by Dennis Morse of Stanford University.

 Further updates contributed by Mike Frysinger. It has been reworked by

 Roland McGrath. Maintained by Paul Smith.

COPYRIGHT

 Copyright ? 1992-1993, 1996-2020 Free Software Foundation, Inc. This

 file is part of GNU make.

 GNU Make is free software; you can redistribute it and/or modify it un?

 der the terms of the GNU General Public License as published by the Page 6/7

 Free Software Foundation; either version 3 of the License, or (at your

 option) any later version.

 GNU Make is distributed in the hope that it will be useful, but WITHOUT

 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

 for more details.

 You should have received a copy of the GNU General Public License along

 with this program. If not, see http://www.gnu.org/licenses/.

GNU 28 February 2016 MAKE(1)

Page 7/7

