r“‘ ,

University

FPDF Library

PDF generator

RedHat
Enterprise Linux

A

Manual Pages

Full credit is given to the above companies including the 0S
that this PDF file was generated!

Red Hat Enterprise Linux Release 9.2 Manual Pages on 'gmake.1' command
$ man gmake.1
MAKE(1) User Commands MAKE(1)
NAME
make - GNU make utility to maintain groups of programs
SYNOPSIS
make [OPTION]... [TARGET]...
DESCRIPTION
The make utility will determine automatically which pieces of a large
program need to be recompiled, and issue the commands to recompile
them. The manual describes the GNU implementation of make, which was
written by Richard Stallman and Roland McGrath, and is currently main?
tained by Paul Smith. Our examples show C programs, since they are
very common, but you can use make with any programming language whose
compiler can be run with a shell command. In fact, make is not limited
to programs. You can use it to describe any task where some files must
be updated automatically from others whenever the others change.
To prepare to use make, you must write a file called the makefile that
describes the relationships among files in your program, and the states
the commands for updating each file. In a program, typically the exe?
cutable file is updated from object files, which are in turn made by
compiling source files.
Once a suitable makefile exists, each time you change some source
files, this simple shell command:

make Page 1/7



suffices to perform all necessary recompilations. The make program
uses the makefile description and the last-modification times of the
files to decide which of the files need to be updated. For each of
those files, it issues the commands recorded in the makefile.
make executes commands in the makefile to update one or more target
names, where name is typically a program. If no -f option is present,
make will look for the makefiles GNUmakefile, makefile, and Makefile,
in that order.
Normally you should call your makefile either makefile or Makefile.
(We recommend Makefile because it appears prominently near the begin?
ning of a directory listing, right near other important files such as
README.) The first name checked, GNUmakefile, is not recommended for
most makefiles. You should use this name if you have a makefile that
is specific to GNU make, and will not be understood by other versions
of make. If makefile is '-', the standard input is read.
make updates a target if it depends on prerequisite files that have
been modified since the target was last modified, or if the target does
not exist.
OPTIONS
-b, -m
These options are ignored for compatibility with other versions of
make.
-B, --always-make
Unconditionally make all targets.
-C dir, --directory=dir
Change to directory dir before reading the makefiles or doing any?
thing else. If multiple -C options are specified, each is inter?
preted relative to the previous one: -C / -C etc is equivalent to
-C letc. This is typically used with recursive invocations of
make.
-d Print debugging information in addition to normal processing. The
debugging information says which files are being considered for

remaking, which file-times are being compared and with what re? Page 2/7



sults, which files actually need to be remade, which implicit
rules are considered and which are applied---everything interest?
ing about how make decides what to do.

--debug[=FLAGS]
Print debugging information in addition to normal processing. If
the FLAGS are omitted, then the behavior is the same as if -d was
specified. FLAGS may be a for all debugging output (same as using
-d), b for basic debugging, v for more verbose basic debugging, i
for showing implicit rules, j for details on invocation of com?
mands, and m for debugging while remaking makefiles. Use n to
disable all previous debugging flags.

-e, --environment-overrides
Give variables taken from the environment precedence over vari?
ables from makefiles.

-E string, --eval string
Interpret string using the eval function, before parsing any make?
files.

-f file, --file=file, --makefile=FILE
Use file as a makefile.

-i, --ignore-errors
Ignore all errors in commands executed to remake files.

-1 dir, --include-dir=dir
Specifies a directory dir to search for included makefiles. If
several -l options are used to specify several directories, the
directories are searched in the order specified. Unlike the argu?
ments to other flags of make, directories given with -1 flags may
come directly after the flag: -Idir is allowed, as well as -1 dir.
This syntax is allowed for compatibility with the C preprocessor's
- flag.

-j [jobs], --jobs[=jobs]
Specifies the number of jobs (commands) to run simultaneously. If
there is more than one -j option, the last one is effective. If

the -j option is given without an argument, make will not limit Page 3/7



K,

the number of jobs that can run simultaneously.

--keep-going

Continue as much as possible after an error. While the target
that failed, and those that depend on it, cannot be remade, the

other dependencies of these targets can be processed all the same.

-l [load], --load-average[=load]

-L,

-n,

Specifies that no new jobs (commands) should be started if there
are others jobs running and the load average is at least load (a
floating-point number). With no argument, removes a previous load
limit.

--check-symlink-times

Use the latest mtime between symlinks and target.

--just-print, --dry-run, --recon

Print the commands that would be executed, but do not execute them

(except in certain circumstances).

-0 file, --old-file=file, --assume-old=file

Do not remake the file file even if it is older than its dependen?
cies, and do not remake anything on account of changes in file.
Essentially the file is treated as very old and its rules are ig?

nored.

-O[type], --output-sync[=type]

-p,

When running multiple jobs in parallel with -j, ensure the output
of each job is collected together rather than interspersed with
output from other jobs. If type is not specified or is target the
output from the entire recipe for each target is grouped together.

If type is line the output from each command line within a recipe
is grouped together. If type is recurse output from an entire re?
cursive make is grouped together. If type is none output synchro?
nization is disabled.

--print-data-base

Print the data base (rules and variable values) that results from
reading the makefiles; then execute as usual or as otherwise spec?

ified. This also prints the version information given by the -v

Page 4/7



switch (see below). To print the data base without trying to re?
make any files, use make -p -f/dev/null.

-q, --question
“Question mode". Do not run any commands, or print anything;
just return an exit status that is zero if the specified targets
are already up to date, nonzero otherwise.

-r, --no-builtin-rules
Eliminate use of the built-in implicit rules. Also clear out the
default list of suffixes for suffix rules.

-R, --no-builtin-variables
Don't define any built-in variables.

-s, --silent, --quiet
Silent operation; do not print the commands as they are executed.

--no-silent
Cancel the effect of the -s option.

-S, --no-keep-going, --stop
Cancel the effect of the -k option.

-t, --touch
Touch files (mark them up to date without really changing them)
instead of running their commands. This is used to pretend that
the commands were done, in order to fool future invocations of
make.

--trace
Information about the disposition of each target is printed (why
the target is being rebuilt and what commands are run to rebuild
it).

-v, --version
Print the version of the make program plus a copyright, a list of
authors and a notice that there is no warranty.

-w, --print-directory
Print a message containing the working directory before and after
other processing. This may be useful for tracking down errors

from complicated nests of recursive make commands.

Page 5/7



--no-print-directory
Turn off -w, even if it was turned on implicitly.
-W file, --what-if=file, --new-file=file, --assume-new=file
Pretend that the target file has just been modified. When used
with the -n flag, this shows you what would happen if you were to
modify that file. Without -n, it is almost the same as running a
touch command on the given file before running make, except that
the modification time is changed only in the imagination of make.
--warn-undefined-variables
Warn when an undefined variable is referenced.
EXIT STATUS
GNU make exits with a status of zero if all makefiles were successfully
parsed and no targets that were built failed. A status of one will be
returned if the -q flag was used and make determines that a target
needs to be rebuilt. A status of two will be returned if any errors
were encountered.
SEE ALSO
The full documentation for make is maintained as a Texinfo manual. If
the info and make programs are properly installed at your site, the
command
info make
should give you access to the complete manual.
BUGS
See the chapter “"Problems and Bugs" in The GNU Make Manual.
AUTHOR
This manual page contributed by Dennis Morse of Stanford University.
Further updates contributed by Mike Frysinger. It has been reworked by
Roland McGrath. Maintained by Paul Smith.
COPYRIGHT
Copyright ? 1992-1993, 1996-2020 Free Software Foundation, Inc. This
file is part of GNU make.
GNU Make is free software; you can redistribute it and/or modify it un?

der the terms of the GNU General Public License as published by the

Page 6/7



Free Software Foundation; either version 3 of the License, or (at your

option) any later version.

GNU Make is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License along

with this program. If not, see http://www.gnu.org/licenses/.

GNU 28 February 2016 MAKE(1)

Page 7/7



