r“‘ ,

University

FPDF Library

PDF generator

RedHat
Enterprise Linux

A

Manual Pages

Full credit is given to the above companies including the 0S
that this PDF file was generated!

Red Hat Enterprise Linux Release 9.2 Manual Pages on 'gpg-card.1' command
$ man gpg-card.1
GPG-CARD(1) GNU Privacy Guard 2.2 GPG-CARD(1)
NAME
gpg-card - Administrate Smart Cards
SYNOPSIS
gpg-card [options]
gpg-card [options] command { -- command }
DESCRIPTION
The gpg-card is used to administrate smart cards and USB tokens. It
provides a superset of features from gpg --card-edit an can be consid?
ered a frontend to scdaemon which is a daemon started by gpg-agent to
handle smart cards.
If gpg-card is invoked without commands an interactive mode is used.
If gpg-card is invoked with one or more commands the same commands as
available in the interactive mode are run from the command line. These
commands need to be delimited with a double-dash. If a double-dash or
a shell specific character is required as part of a command the entire
command needs to be put in quotes. If one of those commands returns an
error the remaining commands are not anymore run unless the command was
prefixed with a single dash.
A list of commands is available by using the command help and a brief
description of each command is printed by using help CMD. See the sec?
tion COMMANDS for a full description.

See the NOTES sections for instructions pertaining to specific cards or

Page 1/19

card applications.
COMMANDS
gpg-card understands the following commands, which have options of
their own. The pseudo-option ?--? can be used to separate command op?
tions from arguments; if this pseudo option is used on the command line
the entire command with options and arguments must be quoted, so that
it is not mixed up with the ?--? as used on the command line to sepa?
rate commands. Note that a short online help is available for all com?
mands by prefixing them with ““help”. Command completion in the in?
teractive mode is also supported.
AUTHENTICATE [--setkey] [--raw] [< file]|key]
AUTH Authenticate to the card. Perform a mutual autentication either
by reading the key from file or by taking it from the command
line as key. Without the option --raw the key is expected to be
hex encoded. To install a new administration key --setkey is
used; this requires a prior authentication with the old key.
This is used with PIV cards.
CAFPR [--clear] N
Change the CA fingerprint number N of an OpenPGP card. N must
be in the range 1 to 3. The option --clear clears the specified
CA fingerprint N or all of them if N is O or not given.
FACTORY-RESET
Do a complete reset of some OpenPGP and PIV cards. This command
deletes all data and keys and resets the PINs to their default.
Don't worry, you need to confirm before the command proceeds.
FETCH Retrieve a key using the URL data object of an OpenPGP card or
if that is missing using the stored fingerprint.
FORCESIG
Toggle the forcesig flag of an OpenPGP card.
GENERATE [--force] [--algo=algo{+algo2}] keyref
Create a new key on a card. Use --force to overwrite an exist?
ing key. Use "help" for algo to get a list of known algorithms.

For OpenPGP cards several algos may be given. Note that the Page 2/19

OpenPGP key generation is done interactively unless --algo or

keyref are given.

KDF-SETUP

Prepare the OpenPGP card KDF feature for this card.

LANG [--clear]

Change the language info for the card. This info can be used by
applications for a personalized greeting. Up to 4 two-digit
language identifiers can be entered as a preference. The option

--clear removes all identifiers. GnuPG does not use this info.

LIST [--cards] [--apps] [--info] [--no-key-lookup] [n] [app]

L

This command reads all information from the current card and
display them in a human readable format. The first section
shows generic information vaialable for all cards. The next
section shows information pertaining to keys which depend on the
actual card and application.

With n given select and list the n-th card; with app also given
select that application. To select an app on the current card

use "-" for n. The serial number of the card may be used in?
stead of n.

The option --cards lists the serial numbers of available cards.
The option --apps lists all card applications. The option

--info selects a card and prints its serial number. The option
--no-key-lookup suppresses the listing of matching OpenPGP or

X.509 keys.

LOGIN [--clear] [< file]

Set the login data object of OpenPGP cards. If file is given
the data is is read from that file. This allows to store binary
data in the login field. The option --clear deletes the login

data object.

NAME [--clear]

Set the name field of an OpenPGP card. With option --clear the

stored name is cleared off the card.

PASSWD [--reset|--nullpin] [pinref]

Page 3/19

Change or unblock the PINs. Note that in interactive mode and
without a pinref a menu is presented for certain cards." In
non-interactive mode and without a pinref a default value i used
for these cards. The option --reset is used with TCOS cards to
reset the PIN using the PUK or vice versa; the option --nullpin
is used for these cards to set the intial PIN.

PRIVATEDO [--clear] n [< file]

Change the private data object n of an OpenPGP card. n must be
in the range 1 to 4. If file is given the data is is read from
that file. The option --clear clears the data.

QUIT

Q Stop processing and terminate gpg-card.

READCERT [--openpgp] certref > file
Read the certificate for key certref and store it in file. With
option --openpgp an OpenPGP keyblock wrapped in a dedicated CMS
content type (OID=1.3.6.1.4.1.11591.2.3.1) is expected and ex?
tracted to file. Note that for current OpenPGP cards a certifi?
cate may only be available at the certref "OPENPGP.3".

RESET Send a reset to the card daemon.

SALUTATION [--clear]

SALUT Change the salutation info for the card. This info can be used
by applications for a personalized greeting. The option --clear
removes this data object. GnuPG does not use this info.

UIF N [on|off[permanent]

Change the User Interaction Flag. That flags tells whether the
confirmation button of a token shall be used. n must in the
range 1 to 3. "permanent" is the same as "on" but the flag
can't be changed anmore.

UNBLOCK
Unblock a PIN using a PUK or Reset Code. Note that OpenPGP
cards prior to version 2 can't use this; instead the PASSWD can
be used to set a new PIN.

URL [--clear]

Page 4/19

Set the URL data object of an OpenPGP card. That data object
can be used by by gpg's --fetch command to retrieve the full
public key. The option --clear deletes the content of that data
object.
VERIFY [chvid]
Verify the PIN identified by chvid or the default PIN.
WRITECERT certref < file
WRITECERT --openpgp certref [< file|fpr]
WRITECERT --clear certref
Write a certificate to the card under the id certref. The op?
tion --clear removes the certificate from the card. The option
--openpgp expects an OpenPGP keyblock and stores it encapsulated
in a CMS container; the keyblock is taken from file or directly
from the OpenPGP key identified by fingerprint fpr.
WRITEKEY [--force] keyref keygrip
Write a private key object identified by keygrip to the card un?
der the id keyref. Option --force allows overwriting an exist?
ing key.
YUBIKEY cmd args
Various commands pertaining to Yubikey tokens with cmd being:
LIST List supported and enabled Yubikey applications.
ENABLE usb|nfc|all [otp|u2flopgp|piv|oath|fido2]all]
DISABLE
Enable or disable the specified or all applications on
the given interface.
NOTES (OPENPGP)
The support for OpenPGP cards in gpg-card is not yet complete. For
missing features, please continue to use gpg --card-edit.
NOTES (PIV)
GnuPG has support for PIV cards (" Personal Identity Verification" as
specified by NIST Special Publication 800-73-4). This section de?
scribes how to initialize (personalize) a fresh Yubikey token featuring

the PIV application (requires Yubikey-5). We assume that the creden?

Page 5/19

tials have not yet been changed and thus are:
Authentication key
This is a 24 byte key described by the hex string
010203040506070801020304050607080102030405060708.
PI1V Application PIN
This is the string 123456.
PIN Unblocking Key
This is the string 12345678.
See the example section on how to change these defaults. For produc?
tion use it is important to use secure values for them. Note that the
Authentication Key is not queried via the usual Pinentry dialog but
needs to be entered manually or read from a file. The use of a dedi?
cated machine to personalize tokens is strongly suggested.
To see what is on the card, the command list can be given. We will use
the interactive mode in the following (the string gpg/card> is the
prompt). An example output for a fresh card is:
gpg/card> list
Reader: 1050:0407:X:0
Card type: yubikey
Card firmware: 5.1.2
Serial number: D2760001240102010006090746250000
Application type .: OpenPGP
Version: 2.1
[--]
It can be seen by the “"Application type" line that GnuPG selected the
OpenPGP application of the Yubikey. This is because GnuPG assigns the
highest priority to the OpenPGP application. To use the PIV applica?
tion of the Yubikey several methods can be used:
With a Yubikey 5 or later the OpenPGP application on the Yubikey can be
disabled:
gpg/card> yubikey disable all opgp
gpg/card> yubikey list

Application USB NFC Page 6/19

OoTP yes yes

U2F yes yes

OPGP no no

PIV yes no

OATH yes yes

FIDO2 yes yes

gpg/card> reset
The reset is required so that the GnuPG system rereads the card. Note
that disabled applications keep all their data and can at any time be
re-enabled (use ?help yubikey?).
Another option, which works for all Yubikey versions, is to disable the
support for OpenPGP cards in scdaemon. This is done by adding the line

disable-application openpgp
to ?~/.gnupg/scdaemon.conf? and by restarting scdaemon, either by
killing the process or by using ?gpgconf --kill scdaemon?. Finally the
default order in which card applications are tried by scdaemon can be
changed. For example to prefer PIV over OpenPGP it is sufficient to
add

application-priority piv
to ?~/.gnupg/scdaemon.conf? and to restart scdaemon. This has an ef?
fect only on tokens which support both, PIV and OpenPGP, but does not

hamper the use of OpenPGP only tokens.

With one of these methods employed the list command of gpg-card shows

this:
gpg/card> list
Reader: 1050:0407:X:0
Card type: yubikey
Card firmware: 5.1.2
Serial number: FF020001008A77C1
Application type .: PIV
Version 1.0

Displayed s/n: yk-9074625

Page 7/19

PIN usage policy .: app-pin
PIN retry counter : - 3 -
PIV authentication: [none]
keyref: PIV.9A
Card authenticat. : [none]
keyref PIV.9E
Digital signature : [none]
keyref: PIV.9C
Key management ...: [none]
keyref: PIV.9D
In case several tokens are plugged into the computer, gpg-card will
show only one. To show another token the number of the token (0, 1, 2,
...) can be given as an argument to the list command. The command
?list --cards? prints a list of all inserted tokens.
Note that the "Displayed s/n" is printed on the token and also shown
in Pinentry prompts asking for the PIN. The four standard key slots
are always shown, if other key slots are initialized they are shown as
well. The PIV authentication key (internal reference PIV.9A) is used
to authenticate the card and the card holder. The use of the associ?
ated private key is protected by the Application PIN which needs to be
provided once and the key can the be used until the card is reset or
removed from the reader or USB port. GnuPG uses this key with its Se?
cure Shell support. The Card authentication key (PIV.9E) is also known
as the CAK and used to support physical access applications. The pri?
vate key is not protected by a PIN and can thus immediately be used.
The Digital signature key (PIV.9C) is used to digitally sign documents.
The use of the associated private key is protected by the Application
PIN which needs to be provided for each signing operation. The Key
management key (PIV.9D) is used for encryption. The use of the associ?
ated private key is protected by the Application PIN which needs to be
provided only once so that decryption operations can then be done until
the card is reset or removed from the reader or USB port.

We now generate three of the four keys. Note that GnuPG does currently Page 8/19

not use the the Card authentication key; however, that key is mandatory
by the PIV standard and thus we create it too. Key generation requires
that we authenticate to the card. This can be done either on the com?
mand line (which would reveal the key):

gpg/card> auth 010203040506070801020304050607080102030405060708
or by reading the key from a file. That file needs to consist of one
LF terminated line with the hex encoded key (as above):

gpg/card> auth < myauth.key
As usual ?help auth? gives help for this command. An error message is
printed if a non-matching key is used. The authentication is valid un?
til a reset of the card or until the card is removed from the reader or
the USB port. Note that that in non-interactive mode the ?<? needs to
be quoted so that the shell does not interpret it as a its own redi?
rection symbol.
Here are the actual commands to generate the keys:

gpg/card> generate --algo=nistp384 PIV.9A

PIV card no. yk-9074625 detected

gpg/card> generate --algo=nistp256 PIV.9E

PIV card no. yk-9074625 detected

gpg/card> generate --algo=rsa2048 PIV.9C

PIV card no. yk-9074625 detected
If a key has already been created for one of the slots an error will be
printed; to create a new key anyway the option ?--force? can be used.
Note that only the private and public keys have been created but no
certificates are stored in the key slots. In fact, GnuPG uses its own
non-standard method to store just the public key in place of the the
certificate. Other application will not be able to make use these keys
until gpgsm or another tool has been used to create and store the re?
spective certificates. Let us see what the list command now shows:

gpg/card> list

Reader: 1050:0407:X:0

Card type: yubikey

Card firmware: 5.1.2

Page 9/19

Serial number: FF020001008A77C1
Application type .: PIV
Version 1.0
Displayed s/n: yk-9074625
PIN usage policy .: app-pin
PIN retry counter : - 3 -
PIV authentication: 213D1825FDEOF8240CB4E4229F01AF90AC658C2E
keyref: PIV.9A (auth)
algorithm ..: nistp384
Card authenticat. : 7AS3E6CFFE7220A0E646B4632EE29E5A7104499C
keyref PIV.9E (auth)
algorithm ..: nistp256
Digital signature : 32A6C6FAFCB8421878608AAB452D5470DD3223ED
keyref PIV.9C (sign,cert)
algorithm ..: rsa2048
Key management ...: [none]
keyref: PIV.9D
The primary information for each key is the keygrip, a 40 byte hex-
string identifying the key. This keygrip is a unique identifier for
the specific parameters of a key. Itis used by gpg-agent and other
parts of GnuPG to associate a private key to its protocol specific cer?
tificate format (X.509, OpenPGP, or SecureShell). Below the keygrip
the key reference along with the key usage capabilities are show. Fi?
nally the algorithm is printed in the format used by {gpg}. At that
point no other information is shown because for these new keys gpg
won't be able to find matching certificates.
Although we could have created the Key management key also with the
generate command, we will create that key off-card so that a backup ex?
ists. To accomplish this a key needs to be created with either gpg or
gpgsm or imported in one of these tools. In our example we create a
self-signed X.509 certificate (exit the gpg-card tool, first):
$ gpgsm --gen-key -o encr.crt

(1) RSA

Page 10/19

(2) Existing key
(3) Existing key from card
Your selection? 1
What keysize do you want? (3072) 2048
Requested keysize is 2048 bits
Possible actions for a RSA key:
(1) sign, encrypt
(2) sign
(3) encrypt
Your selection? 3
Enter the X.509 subject name: CN=Encryption key for yk-9074625,0=example,C=DE
Enter email addresses (end with an empty line):
> otto@example.net
>
Enter DNS names (optional; end with an empty line):
>
Enter URIs (optional; end with an empty line):
>
Create self-signed certificate? (y/N) y
These parameters are used:
Key-Type: RSA
Key-Length: 2048
Key-Usage: encrypt
Serial: random
Name-DN: CN=Encryption key for yk-9074625,0=example,C=DE
Name-Email: otto@example.net
Proceed with creation? (y/N)
Now creating self-signed certificate. This may take a while ...
gpgsm: about to sign the certificate for key: &34798AAFEOA7565088101CC4AE31C5C8C74461CB
gpgsm: certificate created
Ready.
$ gpgsm --import encr.crt

gpgsm: certificate imported Page 11/19

gpgsm: total number processed: 1
gpgsm: imported: 1
Note the last step which imported the created certificate. If you you
instead created a certificate signing request (CSR) instead of a self-
signed certificate and sent this off to a CA you would do the same im?
port step with the certificate received from the CA. Take note of the
keygrip (prefixed with an ampersand) as shown during the certificate
creation or listed it again using ?gpgsm --with-keygrip -k otto@exam?
ple.net?. Now to move the key and certificate to the card start gpg-
card again and enter:
gpg/card> writekey PIV.9D 34798AAFEO0A7565088101CC4AE31C5C8C74461CB
gpg/card> writecert PIV.9D < encr.crt
If you entered a passphrase to protect the private key, you will be
asked for it via the Pinentry prompt. On success the key and the cer?
tificate has been written to the card and a list command shows:
[--]
Key management ...: 34798AAFEOA7565088101CC4AE31C5C8C74461CB
keyref PIV.9D (encr)
algorithm ..: rsa2048
used for ...: X.509
user id ..: CN=Encryption key for yk-9074625,0=example,C=DE
user id ..: <otto@example.net>
In case the same key (identified by the keygrip) has been used for sev?
eral certificates you will see several “"used for" parts. With this
the encryption key is now fully functional and can be used to decrypt
messages encrypted to this certificate. Take care: the original key is
still stored on-disk and should be moved to a backup medium. This can
simply be done by copying the file
?34798AAFEOA7565088101CC4AE31C5C8C74461CB.key? from the directory
?~/.gnupg/private-keys-v1.d/? to the backup medium and deleting the
file at its original place.
The final example is to create a self-signed certificate for digital

signatures. Leave gpg-card using quit or by pressing Control-D and use Page 12/19

gpgsm:

$ gpgsm --learn
$ gpgsm --gen-key -o sign.crt
Please select what kind of key you want:
(1) RSA
(2) Existing key
(3) Existing key from card
Your selection? 3
Serial number of the card: FF020001008A77C1
Available keys:
(1) 213D1825FDEOF8240CB4E4229F01AF90ACE58C2E PIV.9A nistp384
(2) 7TA53E6CFFE7220A0E646B4632EE29E5A7104499C PIV.9E nistp256
(3) 32A6C6FAFCB8421878608AAB452D5470DD3223ED PIV.9C rsa2048
(4) 34798AAFEOA7565088101CC4AE31C5C8C74461CB PIV.9D rsa2048
Your selection? 3
Possible actions for a RSA key:
(1) sign, encrypt
(2) sign
(3) encrypt
Your selection? 2
Enter the X.509 subject name: CN=Signing key for yk-9074625,0=example,C=DE
Enter email addresses (end with an empty line):
> otto@example.net
>
Enter DNS names (optional; end with an empty line):
>
Enter URIs (optional; end with an empty line):
>
Create self-signed certificate? (y/N)
These parameters are used:
Key-Type: card:PIV.9C
Key-Length: 1024

Key-Usage: sign Page 13/19

Serial: random
Name-DN: CN=Signing key for yk-9074625,0=example,C=DE
Name-Email: otto@example.net
Proceed with creation? (y/N) y
Now creating self-signed certificate. This may take a while ...
gpgsm: about to sign the certificate for key: &32A6C6FAFCB8421878608AAB452D5470DD3223ED
gpgsm: certificate created
Ready.
$ gpgsm --import sign.crt
gpgsm: certificate imported
gpgsm: total number processed: 1
gpgsm: imported: 1
The use of ?gpgsm --learn? is currently necessary so that gpg-agent
knows what keys are available on the card. The need for this command
will eventually be removed. The remaining commands are similar to the
creation of an on-disk key. However, here we select the ?Digital sig?
nature? key. During the creation process you will be asked for the Ap?
plication PIN of the card. The final step is to write the certificate
to the card using gpg-card:
gpg/card> writecert PIV.9C < sign.crt
By running list again we will see the fully initialized card:
Reader: 1050:0407:X:0
Card type: yubikey
Card firmware: 5.1.2
Serial number: FF020001008A77C1
Application type .: PIV
Version: 1.0
Displayed s/n: yk-9074625
PIN usage policy .: app-pin
PIN retry counter : - [verified] -
PIV authentication: 213D1825FDEOF8240CB4E4229F01AF90AC658C2E
keyref: PIV.9A (auth)

algorithm ..: nistp384 Page 14/19

Card authenticat. : 7ASB3E6CFFE7220A0E646B4632EE29E5A7104499C
keyref PIV.9E (auth)
algorithm ..: nistp256
Digital signature : 32A6 C6FAFCB8421878608AAB452D5470DD3223ED
keyref: PIV.9C (sign,cert)
algorithm ..: rsa2048
used for ...: X.509
user id ..: CN=Signing key for yk-9074625,0=example,C=DE
user id ..: <otto@example.net>
Key management ...: 34798AAFEOA7565088101CC4AE31C5C8C74461CB
keyref PIV.9D (encr)
algorithm ..: rsa2048
used for ...: X.509
user id ... CN=Encryption key for yk-9074625,0=example,C=DE
user id ..: <otto@example.net>
It is now possible to sign and to encrypt with this card using gpgsm
and to use the ?PIV authentication? key with ssh:
$ ssh-add -I
384 SHA256:0qnJ0Y0ehWxKcx2frLfEIjf6GCdIO550Zed5HqGHsaU cardno:yk-9074625 (ECDSA)
As usual use ssh-add with the uppercase ?-L? to list the public ssh
key. To use the certificates with Thunderbird or Mozilla, please con?
sult the Scute manual for details.
If you want to use the same PIV keys also for OpenPGP (for example on a
Yubikey to avoid switching between OpenPGP and PIV), this is also pos?
sible:
$ gpgsm --learn
$ gpg --full-gen-key
Please select what kind of key you want:
(1) RSA and RSA (default)
(2) DSA and Elgamal
(3) DSA (sign only)
(4) RSA (sign only)

(14) Existing key from card

Page 15/19

Your selection? 14
Serial number of the card: FF020001008A77C1
Available keys:
(1) 213D1825FDEOF8240CB4E4229F01AF90ACE58C2E PIV.9A nistp384 (auth)
(2) 7TA53E6CFFE7220A0E646B4632EE29E5A7104499C PIV.9E nistp256 (auth)
(3) 32A6C6FAFCB8421878608AAB452D5470DD3223ED PIV.9C rsa2048 (cert,sign)
(4) 34798AAFEOA7565088101CC4AE31C5C8C74461CB PIV.9D rsa2048 (encr)
Your selection? 3
Please specify how long the key should be valid.
0 = key does not expire
<n> = key expires in n days
<n>w = key expires in n weeks
<n>m = key expires in n months
<n>y = key expires in n years
Key is valid for? (0)
Key does not expire at all
Is this correct? (y/N) y
GnuPG needs to construct a user ID to identify your key.
Real name:
Email address: otto@example.net
Comment:
You selected this USER-ID:
"otto@example.net"
Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? o
gpg: key C3AFA9ED971BB365 marked as ultimately trusted
gpg: revocation certificate stored as '[...]D971BB365.reVv'
public and secret key created and signed.
Note that this key cannot be used for encryption. You may want to use
the command "--edit-key" to generate a subkey for this purpose.
pub rsa2048 2019-04-04 [SC]
7F899AE2FB73159DD68A1B20C3AFA9ED971BB365
uid otto@example.net

Note that you will be asked two times to enter the PIN of your PIV

Page 16/19

card. If you run gpg in --expert mode you will also ge given the op?
tion to change the usage flags of the key. The next typescript shows
how to add the encryption subkey:
$ gpg --edit-key 7F899AE2FB73159DD68A1B20C3AFA9ED971BB365
Secret key is available.
sec rsa2048/C3AFA9ED971BB365
created: 2019-04-04 expires: never usage: SC
card-no: FF020001008A77C1
trust: ultimate validity: ultimate
[ultimate] (1). otto@example.net
gpg> addkey
Secret parts of primary key are stored on-card.
Please select what kind of key you want:
(3) DSA (sign only)
(4) RSA (sign only)
(5) Elgamal (encrypt only)
(6) RSA (encrypt only)
(14) Existing key from card
Your selection? 14
Serial number of the card: FF020001008A77C1

Available keys:

(1) 213D1825FDEOF8240CB4E4229F01AF90AC6E58C2E PIV.9A nistp384 (auth)

(2) 7A53E6CFFE7220A0E646B4632EE29E5A7104499C PIV.9E nistp256 (auth)

(3) 32A6C6FAFCB8421878608AAB452D5470DD3223ED PIV.9C rsa2048 (cert,sign)

(4) 34798AAFEOA7565088101CC4AE31C5C8C74461CB PIV.9D rsa2048 (encr)

Your selection? 4
Please specify how long the key should be valid.
0 = key does not expire
<n> = key expires in n days
<n>w = key expires in n weeks
<n>m = key expires in n months
<n>y = key expires in n years

Key is valid for? (0)

Page 17/19

Key does not expire at all
Is this correct? (y/N) y
Really create? (y/N) y
sec rsa2048/C3AFA9ED971BB365
created: 2019-04-04 expires: never usage: SC
card-no: FF020001008A77C1
trust: ultimate validity: ultimate
ssb rsa2048/7067860A98FCEGE1
created: 2019-04-04 expires: never usage: E
card-no: FF020001008A77C1
[ultimate] (1). otto@example.net
gpg> save
Now you can use your PIV card also with gpg.
OPTIONS
gpg-card understands these options:
--with-colons
This option has currently no effect.
--status-fd n
Write special status strings to the file descriptor n. This
program returns only the status messages SUCCESS or FAILURE
which are helpful when the caller uses a double fork approach
and can't easily get the return code of the process.
--verbose
Enable extra informational output.
--quiet
Disable almost all informational output.
--version
Print version of the program and exit.
--help Display a brief help page and exit.
--no-autostart
Do not start the gpg-agent if it has not yet been started and
its service is required. This option is mostly useful on ma?

chines where the connection to gpg-agent has been redirected to Page 18/19

another machines.

--no-history
In interactive mode the command line history is usually saved
and restored to and from a file below the GnuPG home directory.
This option inhibits the use of that file.

--agent-program file
Specify the agent program to be started if none is running. The
default value is determined by running gpgconf with the option
--list-dirs.

--gpg-program file
Specify a non-default gpg binary to be used by certain commands.

--gpgsm-program file
Specify a non-default gpgsm binary to be used by certain com?
mands.

--chuid uid
Change the current user to uid which may either be a number or a
name. This can be used from the root account to run gpg-card
for another user. If uid is not the current UID a standard PATH
is set and the envwvar GNUPGHOME is unset. To override the lat?
ter the option --homedir can be used. This option has only an
effect when used on the command line. This option has currently

no effect at all on Windows.

SEE ALSO

scdaemon(1)

GnuPG 2.3.3 2021-10-06 GPG-CARD(1)

Page 19/19

