
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'gpg-card.1' command

$ man gpg-card.1

GPG-CARD(1) GNU Privacy Guard 2.2 GPG-CARD(1)

NAME

 gpg-card - Administrate Smart Cards

SYNOPSIS

 gpg-card [options]

 gpg-card [options] command { -- command }

DESCRIPTION

 The gpg-card is used to administrate smart cards and USB tokens. It

 provides a superset of features from gpg --card-edit an can be consid?

 ered a frontend to scdaemon which is a daemon started by gpg-agent to

 handle smart cards.

 If gpg-card is invoked without commands an interactive mode is used.

 If gpg-card is invoked with one or more commands the same commands as

 available in the interactive mode are run from the command line. These

 commands need to be delimited with a double-dash. If a double-dash or

 a shell specific character is required as part of a command the entire

 command needs to be put in quotes. If one of those commands returns an

 error the remaining commands are not anymore run unless the command was

 prefixed with a single dash.

 A list of commands is available by using the command help and a brief

 description of each command is printed by using help CMD. See the sec?

 tion COMMANDS for a full description.

 See the NOTES sections for instructions pertaining to specific cards or Page 1/19

 card applications.

COMMANDS

 gpg-card understands the following commands, which have options of

 their own. The pseudo-option ?--? can be used to separate command op?

 tions from arguments; if this pseudo option is used on the command line

 the entire command with options and arguments must be quoted, so that

 it is not mixed up with the ?--? as used on the command line to sepa?

 rate commands. Note that a short online help is available for all com?

 mands by prefixing them with ``help''. Command completion in the in?

 teractive mode is also supported.

 AUTHENTICATE [--setkey] [--raw] [< file]|key]

 AUTH Authenticate to the card. Perform a mutual autentication either

 by reading the key from file or by taking it from the command

 line as key. Without the option --raw the key is expected to be

 hex encoded. To install a new administration key --setkey is

 used; this requires a prior authentication with the old key.

 This is used with PIV cards.

 CAFPR [--clear] N

 Change the CA fingerprint number N of an OpenPGP card. N must

 be in the range 1 to 3. The option --clear clears the specified

 CA fingerprint N or all of them if N is 0 or not given.

 FACTORY-RESET

 Do a complete reset of some OpenPGP and PIV cards. This command

 deletes all data and keys and resets the PINs to their default.

 Don't worry, you need to confirm before the command proceeds.

 FETCH Retrieve a key using the URL data object of an OpenPGP card or

 if that is missing using the stored fingerprint.

 FORCESIG

 Toggle the forcesig flag of an OpenPGP card.

 GENERATE [--force] [--algo=algo{+algo2}] keyref

 Create a new key on a card. Use --force to overwrite an exist?

 ing key. Use "help" for algo to get a list of known algorithms.

 For OpenPGP cards several algos may be given. Note that the Page 2/19

 OpenPGP key generation is done interactively unless --algo or

 keyref are given.

 KDF-SETUP

 Prepare the OpenPGP card KDF feature for this card.

 LANG [--clear]

 Change the language info for the card. This info can be used by

 applications for a personalized greeting. Up to 4 two-digit

 language identifiers can be entered as a preference. The option

 --clear removes all identifiers. GnuPG does not use this info.

 LIST [--cards] [--apps] [--info] [--no-key-lookup] [n] [app]

 L This command reads all information from the current card and

 display them in a human readable format. The first section

 shows generic information vaialable for all cards. The next

 section shows information pertaining to keys which depend on the

 actual card and application.

 With n given select and list the n-th card; with app also given

 select that application. To select an app on the current card

 use "-" for n. The serial number of the card may be used in?

 stead of n.

 The option --cards lists the serial numbers of available cards.

 The option --apps lists all card applications. The option

 --info selects a card and prints its serial number. The option

 --no-key-lookup suppresses the listing of matching OpenPGP or

 X.509 keys.

 LOGIN [--clear] [< file]

 Set the login data object of OpenPGP cards. If file is given

 the data is is read from that file. This allows to store binary

 data in the login field. The option --clear deletes the login

 data object.

 NAME [--clear]

 Set the name field of an OpenPGP card. With option --clear the

 stored name is cleared off the card.

 PASSWD [--reset|--nullpin] [pinref] Page 3/19

 Change or unblock the PINs. Note that in interactive mode and

 without a pinref a menu is presented for certain cards." In

 non-interactive mode and without a pinref a default value i used

 for these cards. The option --reset is used with TCOS cards to

 reset the PIN using the PUK or vice versa; the option --nullpin

 is used for these cards to set the intial PIN.

 PRIVATEDO [--clear] n [< file]

 Change the private data object n of an OpenPGP card. n must be

 in the range 1 to 4. If file is given the data is is read from

 that file. The option --clear clears the data.

 QUIT

 Q Stop processing and terminate gpg-card.

 READCERT [--openpgp] certref > file

 Read the certificate for key certref and store it in file. With

 option --openpgp an OpenPGP keyblock wrapped in a dedicated CMS

 content type (OID=1.3.6.1.4.1.11591.2.3.1) is expected and ex?

 tracted to file. Note that for current OpenPGP cards a certifi?

 cate may only be available at the certref "OPENPGP.3".

 RESET Send a reset to the card daemon.

 SALUTATION [--clear]

 SALUT Change the salutation info for the card. This info can be used

 by applications for a personalized greeting. The option --clear

 removes this data object. GnuPG does not use this info.

 UIF N [on|off|permanent]

 Change the User Interaction Flag. That flags tells whether the

 confirmation button of a token shall be used. n must in the

 range 1 to 3. "permanent" is the same as "on" but the flag

 can't be changed anmore.

 UNBLOCK

 Unblock a PIN using a PUK or Reset Code. Note that OpenPGP

 cards prior to version 2 can't use this; instead the PASSWD can

 be used to set a new PIN.

 URL [--clear] Page 4/19

 Set the URL data object of an OpenPGP card. That data object

 can be used by by gpg's --fetch command to retrieve the full

 public key. The option --clear deletes the content of that data

 object.

 VERIFY [chvid]

 Verify the PIN identified by chvid or the default PIN.

 WRITECERT certref < file

 WRITECERT --openpgp certref [< file|fpr]

 WRITECERT --clear certref

 Write a certificate to the card under the id certref. The op?

 tion --clear removes the certificate from the card. The option

 --openpgp expects an OpenPGP keyblock and stores it encapsulated

 in a CMS container; the keyblock is taken from file or directly

 from the OpenPGP key identified by fingerprint fpr.

 WRITEKEY [--force] keyref keygrip

 Write a private key object identified by keygrip to the card un?

 der the id keyref. Option --force allows overwriting an exist?

 ing key.

 YUBIKEY cmd args

 Various commands pertaining to Yubikey tokens with cmd being:

 LIST List supported and enabled Yubikey applications.

 ENABLE usb|nfc|all [otp|u2f|opgp|piv|oath|fido2|all]

 DISABLE

 Enable or disable the specified or all applications on

 the given interface.

NOTES (OPENPGP)

 The support for OpenPGP cards in gpg-card is not yet complete. For

 missing features, please continue to use gpg --card-edit.

NOTES (PIV)

 GnuPG has support for PIV cards (``Personal Identity Verification'' as

 specified by NIST Special Publication 800-73-4). This section de?

 scribes how to initialize (personalize) a fresh Yubikey token featuring

 the PIV application (requires Yubikey-5). We assume that the creden? Page 5/19

 tials have not yet been changed and thus are:

 Authentication key

 This is a 24 byte key described by the hex string

 010203040506070801020304050607080102030405060708.

 PIV Application PIN

 This is the string 123456.

 PIN Unblocking Key

 This is the string 12345678.

 See the example section on how to change these defaults. For produc?

 tion use it is important to use secure values for them. Note that the

 Authentication Key is not queried via the usual Pinentry dialog but

 needs to be entered manually or read from a file. The use of a dedi?

 cated machine to personalize tokens is strongly suggested.

 To see what is on the card, the command list can be given. We will use

 the interactive mode in the following (the string gpg/card> is the

 prompt). An example output for a fresh card is:

 gpg/card> list

 Reader: 1050:0407:X:0

 Card type: yubikey

 Card firmware: 5.1.2

 Serial number: D2760001240102010006090746250000

 Application type .: OpenPGP

 Version: 2.1

 [...]

 It can be seen by the ``Application type'' line that GnuPG selected the

 OpenPGP application of the Yubikey. This is because GnuPG assigns the

 highest priority to the OpenPGP application. To use the PIV applica?

 tion of the Yubikey several methods can be used:

 With a Yubikey 5 or later the OpenPGP application on the Yubikey can be

 disabled:

 gpg/card> yubikey disable all opgp

 gpg/card> yubikey list

 Application USB NFC Page 6/19

 OTP yes yes

 U2F yes yes

 OPGP no no

 PIV yes no

 OATH yes yes

 FIDO2 yes yes

 gpg/card> reset

 The reset is required so that the GnuPG system rereads the card. Note

 that disabled applications keep all their data and can at any time be

 re-enabled (use ?help yubikey?).

 Another option, which works for all Yubikey versions, is to disable the

 support for OpenPGP cards in scdaemon. This is done by adding the line

 disable-application openpgp

 to ?~/.gnupg/scdaemon.conf? and by restarting scdaemon, either by

 killing the process or by using ?gpgconf --kill scdaemon?. Finally the

 default order in which card applications are tried by scdaemon can be

 changed. For example to prefer PIV over OpenPGP it is sufficient to

 add

 application-priority piv

 to ?~/.gnupg/scdaemon.conf? and to restart scdaemon. This has an ef?

 fect only on tokens which support both, PIV and OpenPGP, but does not

 hamper the use of OpenPGP only tokens.

 With one of these methods employed the list command of gpg-card shows

 this:

 gpg/card> list

 Reader: 1050:0407:X:0

 Card type: yubikey

 Card firmware: 5.1.2

 Serial number: FF020001008A77C1

 Application type .: PIV

 Version: 1.0

 Displayed s/n: yk-9074625 Page 7/19

 PIN usage policy .: app-pin

 PIN retry counter : - 3 -

 PIV authentication: [none]

 keyref: PIV.9A

 Card authenticat. : [none]

 keyref: PIV.9E

 Digital signature : [none]

 keyref: PIV.9C

 Key management ...: [none]

 keyref: PIV.9D

 In case several tokens are plugged into the computer, gpg-card will

 show only one. To show another token the number of the token (0, 1, 2,

 ...) can be given as an argument to the list command. The command

 ?list --cards? prints a list of all inserted tokens.

 Note that the ``Displayed s/n'' is printed on the token and also shown

 in Pinentry prompts asking for the PIN. The four standard key slots

 are always shown, if other key slots are initialized they are shown as

 well. The PIV authentication key (internal reference PIV.9A) is used

 to authenticate the card and the card holder. The use of the associ?

 ated private key is protected by the Application PIN which needs to be

 provided once and the key can the be used until the card is reset or

 removed from the reader or USB port. GnuPG uses this key with its Se?

 cure Shell support. The Card authentication key (PIV.9E) is also known

 as the CAK and used to support physical access applications. The pri?

 vate key is not protected by a PIN and can thus immediately be used.

 The Digital signature key (PIV.9C) is used to digitally sign documents.

 The use of the associated private key is protected by the Application

 PIN which needs to be provided for each signing operation. The Key

 management key (PIV.9D) is used for encryption. The use of the associ?

 ated private key is protected by the Application PIN which needs to be

 provided only once so that decryption operations can then be done until

 the card is reset or removed from the reader or USB port.

 We now generate three of the four keys. Note that GnuPG does currently Page 8/19

 not use the the Card authentication key; however, that key is mandatory

 by the PIV standard and thus we create it too. Key generation requires

 that we authenticate to the card. This can be done either on the com?

 mand line (which would reveal the key):

 gpg/card> auth 010203040506070801020304050607080102030405060708

 or by reading the key from a file. That file needs to consist of one

 LF terminated line with the hex encoded key (as above):

 gpg/card> auth < myauth.key

 As usual ?help auth? gives help for this command. An error message is

 printed if a non-matching key is used. The authentication is valid un?

 til a reset of the card or until the card is removed from the reader or

 the USB port. Note that that in non-interactive mode the ?<? needs to

 be quoted so that the shell does not interpret it as a its own redi?

 rection symbol.

 Here are the actual commands to generate the keys:

 gpg/card> generate --algo=nistp384 PIV.9A

 PIV card no. yk-9074625 detected

 gpg/card> generate --algo=nistp256 PIV.9E

 PIV card no. yk-9074625 detected

 gpg/card> generate --algo=rsa2048 PIV.9C

 PIV card no. yk-9074625 detected

 If a key has already been created for one of the slots an error will be

 printed; to create a new key anyway the option ?--force? can be used.

 Note that only the private and public keys have been created but no

 certificates are stored in the key slots. In fact, GnuPG uses its own

 non-standard method to store just the public key in place of the the

 certificate. Other application will not be able to make use these keys

 until gpgsm or another tool has been used to create and store the re?

 spective certificates. Let us see what the list command now shows:

 gpg/card> list

 Reader: 1050:0407:X:0

 Card type: yubikey

 Card firmware: 5.1.2 Page 9/19

 Serial number: FF020001008A77C1

 Application type .: PIV

 Version: 1.0

 Displayed s/n: yk-9074625

 PIN usage policy .: app-pin

 PIN retry counter : - 3 -

 PIV authentication: 213D1825FDE0F8240CB4E4229F01AF90AC658C2E

 keyref: PIV.9A (auth)

 algorithm ..: nistp384

 Card authenticat. : 7A53E6CFFE7220A0E646B4632EE29E5A7104499C

 keyref: PIV.9E (auth)

 algorithm ..: nistp256

 Digital signature : 32A6C6FAFCB8421878608AAB452D5470DD3223ED

 keyref: PIV.9C (sign,cert)

 algorithm ..: rsa2048

 Key management ...: [none]

 keyref: PIV.9D

 The primary information for each key is the keygrip, a 40 byte hex-

 string identifying the key. This keygrip is a unique identifier for

 the specific parameters of a key. It is used by gpg-agent and other

 parts of GnuPG to associate a private key to its protocol specific cer?

 tificate format (X.509, OpenPGP, or SecureShell). Below the keygrip

 the key reference along with the key usage capabilities are show. Fi?

 nally the algorithm is printed in the format used by {gpg}. At that

 point no other information is shown because for these new keys gpg

 won't be able to find matching certificates.

 Although we could have created the Key management key also with the

 generate command, we will create that key off-card so that a backup ex?

 ists. To accomplish this a key needs to be created with either gpg or

 gpgsm or imported in one of these tools. In our example we create a

 self-signed X.509 certificate (exit the gpg-card tool, first):

 $ gpgsm --gen-key -o encr.crt

 (1) RSA Page 10/19

 (2) Existing key

 (3) Existing key from card

 Your selection? 1

 What keysize do you want? (3072) 2048

 Requested keysize is 2048 bits

 Possible actions for a RSA key:

 (1) sign, encrypt

 (2) sign

 (3) encrypt

 Your selection? 3

 Enter the X.509 subject name: CN=Encryption key for yk-9074625,O=example,C=DE

 Enter email addresses (end with an empty line):

 > otto@example.net

 >

 Enter DNS names (optional; end with an empty line):

 >

 Enter URIs (optional; end with an empty line):

 >

 Create self-signed certificate? (y/N) y

 These parameters are used:

 Key-Type: RSA

 Key-Length: 2048

 Key-Usage: encrypt

 Serial: random

 Name-DN: CN=Encryption key for yk-9074625,O=example,C=DE

 Name-Email: otto@example.net

 Proceed with creation? (y/N)

 Now creating self-signed certificate. This may take a while ...

 gpgsm: about to sign the certificate for key: &34798AAFE0A7565088101CC4AE31C5C8C74461CB

 gpgsm: certificate created

 Ready.

 $ gpgsm --import encr.crt

 gpgsm: certificate imported Page 11/19

 gpgsm: total number processed: 1

 gpgsm: imported: 1

 Note the last step which imported the created certificate. If you you

 instead created a certificate signing request (CSR) instead of a self-

 signed certificate and sent this off to a CA you would do the same im?

 port step with the certificate received from the CA. Take note of the

 keygrip (prefixed with an ampersand) as shown during the certificate

 creation or listed it again using ?gpgsm --with-keygrip -k otto@exam?

 ple.net?. Now to move the key and certificate to the card start gpg-

 card again and enter:

 gpg/card> writekey PIV.9D 34798AAFE0A7565088101CC4AE31C5C8C74461CB

 gpg/card> writecert PIV.9D < encr.crt

 If you entered a passphrase to protect the private key, you will be

 asked for it via the Pinentry prompt. On success the key and the cer?

 tificate has been written to the card and a list command shows:

 [...]

 Key management ...: 34798AAFE0A7565088101CC4AE31C5C8C74461CB

 keyref: PIV.9D (encr)

 algorithm ..: rsa2048

 used for ...: X.509

 user id ..: CN=Encryption key for yk-9074625,O=example,C=DE

 user id ..: <otto@example.net>

 In case the same key (identified by the keygrip) has been used for sev?

 eral certificates you will see several ``used for'' parts. With this

 the encryption key is now fully functional and can be used to decrypt

 messages encrypted to this certificate. Take care: the original key is

 still stored on-disk and should be moved to a backup medium. This can

 simply be done by copying the file

 ?34798AAFE0A7565088101CC4AE31C5C8C74461CB.key? from the directory

 ?~/.gnupg/private-keys-v1.d/? to the backup medium and deleting the

 file at its original place.

 The final example is to create a self-signed certificate for digital

 signatures. Leave gpg-card using quit or by pressing Control-D and use Page 12/19

 gpgsm:

 $ gpgsm --learn

 $ gpgsm --gen-key -o sign.crt

 Please select what kind of key you want:

 (1) RSA

 (2) Existing key

 (3) Existing key from card

 Your selection? 3

 Serial number of the card: FF020001008A77C1

 Available keys:

 (1) 213D1825FDE0F8240CB4E4229F01AF90AC658C2E PIV.9A nistp384

 (2) 7A53E6CFFE7220A0E646B4632EE29E5A7104499C PIV.9E nistp256

 (3) 32A6C6FAFCB8421878608AAB452D5470DD3223ED PIV.9C rsa2048

 (4) 34798AAFE0A7565088101CC4AE31C5C8C74461CB PIV.9D rsa2048

 Your selection? 3

 Possible actions for a RSA key:

 (1) sign, encrypt

 (2) sign

 (3) encrypt

 Your selection? 2

 Enter the X.509 subject name: CN=Signing key for yk-9074625,O=example,C=DE

 Enter email addresses (end with an empty line):

 > otto@example.net

 >

 Enter DNS names (optional; end with an empty line):

 >

 Enter URIs (optional; end with an empty line):

 >

 Create self-signed certificate? (y/N)

 These parameters are used:

 Key-Type: card:PIV.9C

 Key-Length: 1024

 Key-Usage: sign Page 13/19

 Serial: random

 Name-DN: CN=Signing key for yk-9074625,O=example,C=DE

 Name-Email: otto@example.net

 Proceed with creation? (y/N) y

 Now creating self-signed certificate. This may take a while ...

 gpgsm: about to sign the certificate for key: &32A6C6FAFCB8421878608AAB452D5470DD3223ED

 gpgsm: certificate created

 Ready.

 $ gpgsm --import sign.crt

 gpgsm: certificate imported

 gpgsm: total number processed: 1

 gpgsm: imported: 1

 The use of ?gpgsm --learn? is currently necessary so that gpg-agent

 knows what keys are available on the card. The need for this command

 will eventually be removed. The remaining commands are similar to the

 creation of an on-disk key. However, here we select the ?Digital sig?

 nature? key. During the creation process you will be asked for the Ap?

 plication PIN of the card. The final step is to write the certificate

 to the card using gpg-card:

 gpg/card> writecert PIV.9C < sign.crt

 By running list again we will see the fully initialized card:

 Reader: 1050:0407:X:0

 Card type: yubikey

 Card firmware: 5.1.2

 Serial number: FF020001008A77C1

 Application type .: PIV

 Version: 1.0

 Displayed s/n: yk-9074625

 PIN usage policy .: app-pin

 PIN retry counter : - [verified] -

 PIV authentication: 213D1825FDE0F8240CB4E4229F01AF90AC658C2E

 keyref: PIV.9A (auth)

 algorithm ..: nistp384 Page 14/19

 Card authenticat. : 7A53E6CFFE7220A0E646B4632EE29E5A7104499C

 keyref: PIV.9E (auth)

 algorithm ..: nistp256

 Digital signature : 32A6C6FAFCB8421878608AAB452D5470DD3223ED

 keyref: PIV.9C (sign,cert)

 algorithm ..: rsa2048

 used for ...: X.509

 user id ..: CN=Signing key for yk-9074625,O=example,C=DE

 user id ..: <otto@example.net>

 Key management ...: 34798AAFE0A7565088101CC4AE31C5C8C74461CB

 keyref: PIV.9D (encr)

 algorithm ..: rsa2048

 used for ...: X.509

 user id ..: CN=Encryption key for yk-9074625,O=example,C=DE

 user id ..: <otto@example.net>

 It is now possible to sign and to encrypt with this card using gpgsm

 and to use the ?PIV authentication? key with ssh:

 $ ssh-add -l

 384 SHA256:0qnJ0Y0ehWxKcx2frLfEljf6GCdlO55OZed5HqGHsaU cardno:yk-9074625 (ECDSA)

 As usual use ssh-add with the uppercase ?-L? to list the public ssh

 key. To use the certificates with Thunderbird or Mozilla, please con?

 sult the Scute manual for details.

 If you want to use the same PIV keys also for OpenPGP (for example on a

 Yubikey to avoid switching between OpenPGP and PIV), this is also pos?

 sible:

 $ gpgsm --learn

 $ gpg --full-gen-key

 Please select what kind of key you want:

 (1) RSA and RSA (default)

 (2) DSA and Elgamal

 (3) DSA (sign only)

 (4) RSA (sign only)

 (14) Existing key from card Page 15/19

 Your selection? 14

 Serial number of the card: FF020001008A77C1

 Available keys:

 (1) 213D1825FDE0F8240CB4E4229F01AF90AC658C2E PIV.9A nistp384 (auth)

 (2) 7A53E6CFFE7220A0E646B4632EE29E5A7104499C PIV.9E nistp256 (auth)

 (3) 32A6C6FAFCB8421878608AAB452D5470DD3223ED PIV.9C rsa2048 (cert,sign)

 (4) 34798AAFE0A7565088101CC4AE31C5C8C74461CB PIV.9D rsa2048 (encr)

 Your selection? 3

 Please specify how long the key should be valid.

 0 = key does not expire

 <n> = key expires in n days

 <n>w = key expires in n weeks

 <n>m = key expires in n months

 <n>y = key expires in n years

 Key is valid for? (0)

 Key does not expire at all

 Is this correct? (y/N) y

 GnuPG needs to construct a user ID to identify your key.

 Real name:

 Email address: otto@example.net

 Comment:

 You selected this USER-ID:

 "otto@example.net"

 Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? o

 gpg: key C3AFA9ED971BB365 marked as ultimately trusted

 gpg: revocation certificate stored as '[...]D971BB365.rev'

 public and secret key created and signed.

 Note that this key cannot be used for encryption. You may want to use

 the command "--edit-key" to generate a subkey for this purpose.

 pub rsa2048 2019-04-04 [SC]

 7F899AE2FB73159DD68A1B20C3AFA9ED971BB365

 uid otto@example.net

 Note that you will be asked two times to enter the PIN of your PIV Page 16/19

 card. If you run gpg in --expert mode you will also ge given the op?

 tion to change the usage flags of the key. The next typescript shows

 how to add the encryption subkey:

 $ gpg --edit-key 7F899AE2FB73159DD68A1B20C3AFA9ED971BB365

 Secret key is available.

 sec rsa2048/C3AFA9ED971BB365

 created: 2019-04-04 expires: never usage: SC

 card-no: FF020001008A77C1

 trust: ultimate validity: ultimate

 [ultimate] (1). otto@example.net

 gpg> addkey

 Secret parts of primary key are stored on-card.

 Please select what kind of key you want:

 (3) DSA (sign only)

 (4) RSA (sign only)

 (5) Elgamal (encrypt only)

 (6) RSA (encrypt only)

 (14) Existing key from card

 Your selection? 14

 Serial number of the card: FF020001008A77C1

 Available keys:

 (1) 213D1825FDE0F8240CB4E4229F01AF90AC658C2E PIV.9A nistp384 (auth)

 (2) 7A53E6CFFE7220A0E646B4632EE29E5A7104499C PIV.9E nistp256 (auth)

 (3) 32A6C6FAFCB8421878608AAB452D5470DD3223ED PIV.9C rsa2048 (cert,sign)

 (4) 34798AAFE0A7565088101CC4AE31C5C8C74461CB PIV.9D rsa2048 (encr)

 Your selection? 4

 Please specify how long the key should be valid.

 0 = key does not expire

 <n> = key expires in n days

 <n>w = key expires in n weeks

 <n>m = key expires in n months

 <n>y = key expires in n years

 Key is valid for? (0) Page 17/19

 Key does not expire at all

 Is this correct? (y/N) y

 Really create? (y/N) y

 sec rsa2048/C3AFA9ED971BB365

 created: 2019-04-04 expires: never usage: SC

 card-no: FF020001008A77C1

 trust: ultimate validity: ultimate

 ssb rsa2048/7067860A98FCE6E1

 created: 2019-04-04 expires: never usage: E

 card-no: FF020001008A77C1

 [ultimate] (1). otto@example.net

 gpg> save

 Now you can use your PIV card also with gpg.

OPTIONS

 gpg-card understands these options:

 --with-colons

 This option has currently no effect.

 --status-fd n

 Write special status strings to the file descriptor n. This

 program returns only the status messages SUCCESS or FAILURE

 which are helpful when the caller uses a double fork approach

 and can't easily get the return code of the process.

 --verbose

 Enable extra informational output.

 --quiet

 Disable almost all informational output.

 --version

 Print version of the program and exit.

 --help Display a brief help page and exit.

 --no-autostart

 Do not start the gpg-agent if it has not yet been started and

 its service is required. This option is mostly useful on ma?

 chines where the connection to gpg-agent has been redirected to Page 18/19

 another machines.

 --no-history

 In interactive mode the command line history is usually saved

 and restored to and from a file below the GnuPG home directory.

 This option inhibits the use of that file.

 --agent-program file

 Specify the agent program to be started if none is running. The

 default value is determined by running gpgconf with the option

 --list-dirs.

 --gpg-program file

 Specify a non-default gpg binary to be used by certain commands.

 --gpgsm-program file

 Specify a non-default gpgsm binary to be used by certain com?

 mands.

 --chuid uid

 Change the current user to uid which may either be a number or a

 name. This can be used from the root account to run gpg-card

 for another user. If uid is not the current UID a standard PATH

 is set and the envvar GNUPGHOME is unset. To override the lat?

 ter the option --homedir can be used. This option has only an

 effect when used on the command line. This option has currently

 no effect at all on Windows.

SEE ALSO

 scdaemon(1)

GnuPG 2.3.3 2021-10-06 GPG-CARD(1)

Page 19/19

