
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'gpg.1' command

$ man gpg.1

GPG(1) GNU Privacy Guard 2.2 GPG(1)

NAME

 gpg - OpenPGP encryption and signing tool

SYNOPSIS

 gpg [--homedir dir] [--options file] [options] command [args]

DESCRIPTION

 gpg is the OpenPGP part of the GNU Privacy Guard (GnuPG). It is a tool

 to provide digital encryption and signing services using the OpenPGP

 standard. gpg features complete key management and all the bells and

 whistles you would expect from a full OpenPGP implementation.

 There are two main versions of GnuPG: GnuPG 1.x and GnuPG 2.x. GnuPG

 2.x supports modern encryption algorithms and thus should be preferred

 over GnuPG 1.x. You only need to use GnuPG 1.x if your platform

 doesn't support GnuPG 2.x, or you need support for some features that

 GnuPG 2.x has deprecated, e.g., decrypting data created with PGP-2

 keys.

 If you are looking for version 1 of GnuPG, you may find that version

 installed under the name gpg1.

RETURN VALUE

 The program returns 0 if there are no severe errors, 1 if at least a

 signature was bad, and other error codes for fatal errors.

 Note that signature verification requires exact knowledge of what has

 been signed and by whom it has been signed. Using only the return code Page 1/91

 is thus not an appropriate way to verify a signature by a script. Ei?

 ther make proper use or the status codes or use the gpgv tool which has

 been designed to make signature verification easy for scripts.

WARNINGS

 Use a good password for your user account and make sure that all secu?

 rity issues are always fixed on your machine. Also employ diligent

 physical protection to your machine. Consider to use a good passphrase

 as a last resort protection to your secret key in the case your machine

 gets stolen. It is important that your secret key is never leaked.

 Using an easy to carry around token or smartcard with the secret key is

 often a advisable.

 If you are going to verify detached signatures, make sure that the pro?

 gram knows about it; either give both filenames on the command line or

 use ?-? to specify STDIN.

 For scripted or other unattended use of gpg make sure to use the ma?

 chine-parseable interface and not the default interface which is in?

 tended for direct use by humans. The machine-parseable interface pro?

 vides a stable and well documented API independent of the locale or fu?

 ture changes of gpg. To enable this interface use the options --with-

 colons and --status-fd. For certain operations the option --command-fd

 may come handy too. See this man page and the file ?DETAILS? for the

 specification of the interface. Note that the GnuPG ``info'' pages as

 well as the PDF version of the GnuPG manual features a chapter on unat?

 tended use of GnuPG. As an alternative the library GPGME can be used

 as a high-level abstraction on top of that interface.

INTEROPERABILITY

 GnuPG tries to be a very flexible implementation of the OpenPGP stan?

 dard. In particular, GnuPG implements many of the optional parts of the

 standard, such as the SHA-512 hash, and the ZLIB and BZIP2 compression

 algorithms. It is important to be aware that not all OpenPGP programs

 implement these optional algorithms and that by forcing their use via

 the --cipher-algo, --digest-algo, --cert-digest-algo, or --compress-

 algo options in GnuPG, it is possible to create a perfectly valid Page 2/91

 OpenPGP message, but one that cannot be read by the intended recipient.

 There are dozens of variations of OpenPGP programs available, and each

 supports a slightly different subset of these optional algorithms. For

 example, until recently, no (unhacked) version of PGP supported the

 BLOWFISH cipher algorithm. A message using BLOWFISH simply could not be

 read by a PGP user. By default, GnuPG uses the standard OpenPGP prefer?

 ences system that will always do the right thing and create messages

 that are usable by all recipients, regardless of which OpenPGP program

 they use. Only override this safe default if you really know what you

 are doing.

 If you absolutely must override the safe default, or if the preferences

 on a given key are invalid for some reason, you are far better off us?

 ing the --pgp6, --pgp7, or --pgp8 options. These options are safe as

 they do not force any particular algorithms in violation of OpenPGP,

 but rather reduce the available algorithms to a "PGP-safe" list.

COMMANDS

 Commands are not distinguished from options except for the fact that

 only one command is allowed. Generally speaking, irrelevant options

 are silently ignored, and may not be checked for correctness.

 gpg may be run with no commands. In this case it will print a warning

 perform a reasonable action depending on the type of file it is given

 as input (an encrypted message is decrypted, a signature is verified, a

 file containing keys is listed, etc.).

 If you run into any problems, please add the option --verbose to the

 invocation to see more diagnostics.

 Commands not specific to the function

 --version

 Print the program version and licensing information. Note that

 you cannot abbreviate this command.

 --help

 -h Print a usage message summarizing the most useful command-line

 options. Note that you cannot arbitrarily abbreviate this com?

 mand (though you can use its short form -h). Page 3/91

 --warranty

 Print warranty information.

 --dump-options

 Print a list of all available options and commands. Note that

 you cannot abbreviate this command.

 Commands to select the type of operation

 --sign

 -s Sign a message. This command may be combined with --encrypt (to

 sign and encrypt a message), --symmetric (to sign and symmetri?

 cally encrypt a message), or both --encrypt and --symmetric (to

 sign and encrypt a message that can be decrypted using a secret

 key or a passphrase). The signing key is chosen by default or

 can be set explicitly using the --local-user and --default-key

 options.

 --clear-sign

 --clearsign

 Make a cleartext signature. The content in a cleartext signa?

 ture is readable without any special software. OpenPGP software

 is only needed to verify the signature. cleartext signatures

 may modify end-of-line whitespace for platform independence and

 are not intended to be reversible. The signing key is chosen by

 default or can be set explicitly using the --local-user and

 --default-key options.

 --detach-sign

 -b Make a detached signature.

 --encrypt

 -e Encrypt data to one or more public keys. This command may be

 combined with --sign (to sign and encrypt a message), --symmet?

 ric (to encrypt a message that can be decrypted using a secret

 key or a passphrase), or --sign and --symmetric together (for a

 signed message that can be decrypted using a secret key or a

 passphrase). --recipient and related options specify which pub?

 lic keys to use for encryption. Page 4/91

 --symmetric

 -c Encrypt with a symmetric cipher using a passphrase. The default

 symmetric cipher used is AES-128, but may be chosen with the

 --cipher-algo option. This command may be combined with --sign

 (for a signed and symmetrically encrypted message), --encrypt

 (for a message that may be decrypted via a secret key or a

 passphrase), or --sign and --encrypt together (for a signed mes?

 sage that may be decrypted via a secret key or a passphrase).

 gpg caches the passphrase used for symmetric encryption so that

 a decrypt operation may not require that the user needs to enter

 the passphrase. The option --no-symkey-cache can be used to

 disable this feature.

 --store

 Store only (make a simple literal data packet).

 --decrypt

 -d Decrypt the file given on the command line (or STDIN if no file

 is specified) and write it to STDOUT (or the file specified with

 --output). If the decrypted file is signed, the signature is

 also verified. This command differs from the default operation,

 as it never writes to the filename which is included in the file

 and it rejects files that don't begin with an encrypted message.

 --verify

 Assume that the first argument is a signed file and verify it

 without generating any output. With no arguments, the signature

 packet is read from STDIN. If only one argument is given, the

 specified file is expected to include a complete signature.

 With more than one argument, the first argument should specify a

 file with a detached signature and the remaining files should

 contain the signed data. To read the signed data from STDIN, use

 ?-? as the second filename. For security reasons, a detached

 signature will not read the signed material from STDIN if not

 explicitly specified.

 Note: If the option --batch is not used, gpg may assume that a Page 5/91

 single argument is a file with a detached signature, and it will

 try to find a matching data file by stripping certain suffixes.

 Using this historical feature to verify a detached signature is

 strongly discouraged; you should always specify the data file

 explicitly.

 Note: When verifying a cleartext signature, gpg verifies only

 what makes up the cleartext signed data and not any extra data

 outside of the cleartext signature or the header lines directly

 following the dash marker line. The option --output may be used

 to write out the actual signed data, but there are other pit?

 falls with this format as well. It is suggested to avoid clear?

 text signatures in favor of detached signatures.

 Note: Sometimes the use of the gpgv tool is easier than using

 the full-fledged gpg with this option. gpgv is designed to com?

 pare signed data against a list of trusted keys and returns with

 success only for a good signature. It has its own manual page.

 --multifile

 This modifies certain other commands to accept multiple files

 for processing on the command line or read from STDIN with each

 filename on a separate line. This allows for many files to be

 processed at once. --multifile may currently be used along with

 --verify, --encrypt, and --decrypt. Note that --multifile --ver?

 ify may not be used with detached signatures.

 --verify-files

 Identical to --multifile --verify.

 --encrypt-files

 Identical to --multifile --encrypt.

 --decrypt-files

 Identical to --multifile --decrypt.

 --list-keys

 -k

 --list-public-keys

 List the specified keys. If no keys are specified, then all Page 6/91

 keys from the configured public keyrings are listed.

 Never use the output of this command in scripts or other pro?

 grams. The output is intended only for humans and its format is

 likely to change. The --with-colons option emits the output in

 a stable, machine-parseable format, which is intended for use by

 scripts and other programs.

 --list-secret-keys

 -K List the specified secret keys. If no keys are specified, then

 all known secret keys are listed. A # after the initial tags

 sec or ssb means that the secret key or subkey is currently not

 usable. We also say that this key has been taken offline (for

 example, a primary key can be taken offline by exporting the key

 using the command --export-secret-subkeys). A > after these

 tags indicate that the key is stored on a smartcard. See also

 --list-keys.

 --check-signatures

 --check-sigs

 Same as --list-keys, but the key signatures are verified and

 listed too. Note that for performance reasons the revocation

 status of a signing key is not shown. This command has the same

 effect as using --list-keys with --with-sig-check.

 The status of the verification is indicated by a flag directly

 following the "sig" tag (and thus before the flags described be?

 low. A "!" indicates that the signature has been successfully

 verified, a "-" denotes a bad signature and a "%" is used if an

 error occurred while checking the signature (e.g. a non sup?

 ported algorithm). Signatures where the public key is not

 available are not listed; to see their keyids the command

 --list-sigs can be used.

 For each signature listed, there are several flags in between

 the signature status flag and keyid. These flags give addi?

 tional information about each key signature. From left to

 right, they are the numbers 1-3 for certificate check level (see Page 7/91

 --ask-cert-level), "L" for a local or non-exportable signature

 (see --lsign-key), "R" for a nonRevocable signature (see the

 --edit-key command "nrsign"), "P" for a signature that contains

 a policy URL (see --cert-policy-url), "N" for a signature that

 contains a notation (see --cert-notation), "X" for an eXpired

 signature (see --ask-cert-expire), and the numbers 1-9 or "T"

 for 10 and above to indicate trust signature levels (see the

 --edit-key command "tsign").

 --locate-keys

 --locate-external-keys

 Locate the keys given as arguments. This command basically uses

 the same algorithm as used when locating keys for encryption and

 may thus be used to see what keys gpg might use. In particular

 external methods as defined by --auto-key-locate are used to lo?

 cate a key if the arguments comain valid mail addresses. Only

 public keys are listed.

 The variant --locate-external-keys does not consider a locally

 existing key and can thus be used to force the refresh of a key

 via the defined external methods. If a fingerprint is given and

 and the methods defined by --auto-key-locate define LDAP

 servers, the key is fetched from these resources; defined non-

 LDAP keyservers are skipped.

 --show-keys

 This commands takes OpenPGP keys as input and prints information

 about them in the same way the command --list-keys does for lo?

 cally stored key. In addition the list options show-unusable-

 uids, show-unusable-subkeys, show-notations and show-policy-urls

 are also enabled. As usual for automated processing, this com?

 mand should be combined with the option --with-colons.

 --fingerprint

 List all keys (or the specified ones) along with their finger?

 prints. This is the same output as --list-keys but with the ad?

 ditional output of a line with the fingerprint. May also be com? Page 8/91

 bined with --check-signatures. If this command is given twice,

 the fingerprints of all secondary keys are listed too. This

 command also forces pretty printing of fingerprints if the keyid

 format has been set to "none".

 --list-packets

 List only the sequence of packets. This command is only useful

 for debugging. When used with option --verbose the actual MPI

 values are dumped and not only their lengths. Note that the

 output of this command may change with new releases.

 --edit-card

 --card-edit

 Present a menu to work with a smartcard. The subcommand "help"

 provides an overview on available commands. For a detailed de?

 scription, please see the Card HOWTO at https://gnupg.org/docu?

 mentation/howtos.html#GnuPG-cardHOWTO .

 --card-status

 Show the content of the smart card.

 --change-pin

 Present a menu to allow changing the PIN of a smartcard. This

 functionality is also available as the subcommand "passwd" with

 the --edit-card command.

 --delete-keys name

 Remove key from the public keyring. In batch mode either --yes

 is required or the key must be specified by fingerprint. This is

 a safeguard against accidental deletion of multiple keys. If

 the exclamation mark syntax is used with the fingerprint of a

 subkey only that subkey is deleted; if the exclamation mark is

 used with the fingerprint of the primary key the entire public

 key is deleted.

 --delete-secret-keys name

 Remove key from the secret keyring. In batch mode the key must

 be specified by fingerprint. The option --yes can be used to

 advise gpg-agent not to request a confirmation. This extra pre- Page 9/91

 caution is done because gpg can't be sure that the secret key

 (as controlled by gpg-agent) is only used for the given OpenPGP

 public key. If the exclamation mark syntax is used with the

 fingerprint of a subkey only the secret part of that subkey is

 deleted; if the exclamation mark is used with the fingerprint of

 the primary key only the secret part of the primary key is

 deleted.

 --delete-secret-and-public-key name

 Same as --delete-key, but if a secret key exists, it will be re?

 moved first. In batch mode the key must be specified by finger?

 print. The option --yes can be used to advise gpg-agent not to

 request a confirmation.

 --export

 Either export all keys from all keyrings (default keyring and

 those registered via option --keyring), or if at least one name

 is given, those of the given name. The exported keys are written

 to STDOUT or to the file given with option --output. Use to?

 gether with --armor to mail those keys.

 --send-keys keyIDs

 Similar to --export but sends the keys to a keyserver. Finger?

 prints may be used instead of key IDs. Don't send your complete

 keyring to a keyserver --- select only those keys which are new

 or changed by you. If no keyIDs are given, gpg does nothing.

 Take care: Keyservers are by design write only systems and thus

 it is not possible to ever delete keys once they have been send

 to a keyserver.

 --export-secret-keys

 --export-secret-subkeys

 Same as --export, but exports the secret keys instead. The ex?

 ported keys are written to STDOUT or to the file given with op?

 tion --output. This command is often used along with the option

 --armor to allow for easy printing of the key for paper backup;

 however the external tool paperkey does a better job of creating Page 10/91

 backups on paper. Note that exporting a secret key can be a se?

 curity risk if the exported keys are sent over an insecure chan?

 nel.

 The second form of the command has the special property to ren?

 der the secret part of the primary key useless; this is a GNU

 extension to OpenPGP and other implementations can not be ex?

 pected to successfully import such a key. Its intended use is

 in generating a full key with an additional signing subkey on a

 dedicated machine. This command then exports the key without

 the primary key to the main machine.

 GnuPG may ask you to enter the passphrase for the key. This is

 required, because the internal protection method of the secret

 key is different from the one specified by the OpenPGP protocol.

 --export-ssh-key

 This command is used to export a key in the OpenSSH public key

 format. It requires the specification of one key by the usual

 means and exports the latest valid subkey which has an authenti?

 cation capability to STDOUT or to the file given with option

 --output. That output can directly be added to ssh's ?autho?

 rized_key? file.

 By specifying the key to export using a key ID or a fingerprint

 suffixed with an exclamation mark (!), a specific subkey or the

 primary key can be exported. This does not even require that

 the key has the authentication capability flag set.

 --import

 --fast-import

 Import/merge keys. This adds the given keys to the keyring. The

 fast version is currently just a synonym.

 There are a few other options which control how this command

 works. Most notable here is the --import-options merge-only op?

 tion which does not insert new keys but does only the merging of

 new signatures, user-IDs and subkeys.

 --receive-keys keyIDs Page 11/91

 --recv-keys keyIDs

 Import the keys with the given keyIDs from a keyserver.

 --refresh-keys

 Request updates from a keyserver for keys that already exist on

 the local keyring. This is useful for updating a key with the

 latest signatures, user IDs, etc. Calling this with no arguments

 will refresh the entire keyring.

 --search-keys names

 Search the keyserver for the given names. Multiple names given

 here will be joined together to create the search string for the

 keyserver. Note that keyservers search for names in a different

 and simpler way than gpg does. The best choice is to use a mail

 address. Due to data privacy reasons keyservers may even not

 even allow searching by user id or mail address and thus may

 only return results when being used with the --recv-key command

 to search by key fingerprint or keyid.

 --fetch-keys URIs

 Retrieve keys located at the specified URIs. Note that different

 installations of GnuPG may support different protocols (HTTP,

 FTP, LDAP, etc.). When using HTTPS the system provided root

 certificates are used by this command.

 --update-trustdb

 Do trust database maintenance. This command iterates over all

 keys and builds the Web of Trust. This is an interactive command

 because it may have to ask for the "ownertrust" values for keys.

 The user has to give an estimation of how far she trusts the

 owner of the displayed key to correctly certify (sign) other

 keys. GnuPG only asks for the ownertrust value if it has not yet

 been assigned to a key. Using the --edit-key menu, the assigned

 value can be changed at any time.

 --check-trustdb

 Do trust database maintenance without user interaction. From

 time to time the trust database must be updated so that expired Page 12/91

 keys or signatures and the resulting changes in the Web of Trust

 can be tracked. Normally, GnuPG will calculate when this is re?

 quired and do it automatically unless --no-auto-check-trustdb is

 set. This command can be used to force a trust database check at

 any time. The processing is identical to that of --update-

 trustdb but it skips keys with a not yet defined "ownertrust".

 For use with cron jobs, this command can be used together with

 --batch in which case the trust database check is done only if a

 check is needed. To force a run even in batch mode add the op?

 tion --yes.

 --export-ownertrust

 Send the ownertrust values to STDOUT. This is useful for backup

 purposes as these values are the only ones which can't be re-

 created from a corrupted trustdb. Example:

 gpg --export-ownertrust > otrust.txt

 --import-ownertrust

 Update the trustdb with the ownertrust values stored in files

 (or STDIN if not given); existing values will be overwritten.

 In case of a severely damaged trustdb and if you have a recent

 backup of the ownertrust values (e.g. in the file ?otrust.txt?),

 you may re-create the trustdb using these commands:

 cd ~/.gnupg

 rm trustdb.gpg

 gpg --import-ownertrust < otrust.txt

 --rebuild-keydb-caches

 When updating from version 1.0.6 to 1.0.7 this command should be

 used to create signature caches in the keyring. It might be

 handy in other situations too.

 --print-md algo

 --print-mds

 Print message digest of algorithm algo for all given files or

 STDIN. With the second form (or a deprecated "*" for algo) di?

 gests for all available algorithms are printed. Page 13/91

 --gen-random 0|1|2 count

 Emit count random bytes of the given quality level 0, 1 or 2. If

 count is not given or zero, an endless sequence of random bytes

 will be emitted. If used with --armor the output will be base64

 encoded. PLEASE, don't use this command unless you know what

 you are doing; it may remove precious entropy from the system!

 --gen-prime mode bits

 Use the source, Luke :-). The output format is subject to change

 with ant release.

 --enarmor

 --dearmor

 Pack or unpack an arbitrary input into/from an OpenPGP ASCII ar?

 mor. This is a GnuPG extension to OpenPGP and in general not

 very useful.

 --unwrap

 This command is similar to --decrypt with the change that the

 output is not the usual plaintext but the original message with

 the decryption layer removed. Thus the output will be an

 OpenPGP data structure which often means a signed OpenPGP mes?

 sage. Note that this command may or may not remove a compres?

 sion layer which is often found beneath the encryption layer.

 --tofu-policy {auto|good|unknown|bad|ask} keys

 Set the TOFU policy for all the bindings associated with the

 specified keys. For more information about the meaning of the

 policies, see: [trust-model-tofu]. The keys may be specified

 either by their fingerprint (preferred) or their keyid.

 How to manage your keys

 This section explains the main commands for key management.

 --quick-generate-key user-id [algo [usage [expire]]]

 --quick-gen-key

 This is a simple command to generate a standard key with one

 user id. In contrast to --generate-key the key is generated di?

 rectly without the need to answer a bunch of prompts. Unless Page 14/91

 the option --yes is given, the key creation will be canceled if

 the given user id already exists in the keyring.

 If invoked directly on the console without any special options

 an answer to a ``Continue?'' style confirmation prompt is re?

 quired. In case the user id already exists in the keyring a

 second prompt to force the creation of the key will show up.

 If algo or usage are given, only the primary key is created and

 no prompts are shown. To specify an expiration date but still

 create a primary and subkey use ``default'' or ``future-de?

 fault'' for algo and ``default'' for usage. For a description

 of these optional arguments see the command --quick-add-key.

 The usage accepts also the value ``cert'' which can be used to

 create a certification only primary key; the default is to a

 create certification and signing key.

 The expire argument can be used to specify an expiration date

 for the key. Several formats are supported; commonly the ISO

 formats ``YYYY-MM-DD'' or ``YYYYMMDDThhmmss'' are used. To make

 the key expire in N seconds, N days, N weeks, N months, or N

 years use ``seconds=N'', ``Nd'', ``Nw'', ``Nm'', or ``Ny'' re?

 spectively. Not specifying a value, or using ``-'' results in a

 key expiring in a reasonable default interval. The values

 ``never'', ``none'' can be used for no expiration date.

 If this command is used with --batch, --pinentry-mode has been

 set to loopback, and one of the passphrase options

 (--passphrase, --passphrase-fd, or --passphrase-file) is used,

 the supplied passphrase is used for the new key and the agent

 does not ask for it. To create a key without any protection

 --passphrase '' may be used.

 To create an OpenPGP key from the keys available on the cur?

 rently inserted smartcard, the special string ``card'' can be

 used for algo. If the card features an encryption and a signing

 key, gpg will figure them out and creates an OpenPGP key con?

 sisting of the usual primary key and one subkey. This works Page 15/91

 only with certain smartcards. Note that the interactive --full-

 gen-key command allows to do the same but with greater flexibil?

 ity in the selection of the smartcard keys.

 Note that it is possible to create a primary key and a subkey

 using non-default algorithms by using ``default'' and changing

 the default parameters using the option --default-new-key-algo.

 --quick-set-expire fpr expire [*|subfprs]

 With two arguments given, directly set the expiration time of

 the primary key identified by fpr to expire. To remove the ex?

 piration time 0 can be used. With three arguments and the third

 given as an asterisk, the expiration time of all non-revoked and

 not yet expired subkeys are set to expire. With more than two

 arguments and a list of fingerprints given for subfprs, all non-

 revoked subkeys matching these fingerprints are set to expire.

 --quick-add-key fpr [algo [usage [expire]]]

 Directly add a subkey to the key identified by the fingerprint

 fpr. Without the optional arguments an encryption subkey is

 added. If any of the arguments are given a more specific subkey

 is added.

 algo may be any of the supported algorithms or curve names given

 in the format as used by key listings. To use the default algo?

 rithm the string ``default'' or ``-'' can be used. Supported

 algorithms are ``rsa'', ``dsa'', ``elg'', ``ed25519'',

 ``cv25519'', and other ECC curves. For example the string

 ``rsa'' adds an RSA key with the default key length; a string

 ``rsa4096'' requests that the key length is 4096 bits. The

 string ``future-default'' is an alias for the algorithm which

 will likely be used as default algorithm in future versions of

 gpg. To list the supported ECC curves the command gpg --with-

 colons --list-config curve can be used.

 Depending on the given algo the subkey may either be an encryp?

 tion subkey or a signing subkey. If an algorithm is capable of

 signing and encryption and such a subkey is desired, a usage Page 16/91

 string must be given. This string is either ``default'' or

 ``-'' to keep the default or a comma delimited list (or space

 delimited list) of keywords: ``sign'' for a signing subkey,

 ``auth'' for an authentication subkey, and ``encr'' for an en?

 cryption subkey (``encrypt'' can be used as alias for ``encr'').

 The valid combinations depend on the algorithm.

 The expire argument can be used to specify an expiration date

 for the key. Several formats are supported; commonly the ISO

 formats ``YYYY-MM-DD'' or ``YYYYMMDDThhmmss'' are used. To make

 the key expire in N seconds, N days, N weeks, N months, or N

 years use ``seconds=N'', ``Nd'', ``Nw'', ``Nm'', or ``Ny'' re?

 spectively. Not specifying a value, or using ``-'' results in a

 key expiring in a reasonable default interval. The values

 ``never'', ``none'' can be used for no expiration date.

 --generate-key

 --gen-key

 Generate a new key pair using the current default parameters.

 This is the standard command to create a new key. In addition

 to the key a revocation certificate is created and stored in the

 ?openpgp-revocs.d? directory below the GnuPG home directory.

 --full-generate-key

 --full-gen-key

 Generate a new key pair with dialogs for all options. This is

 an extended version of --generate-key.

 There is also a feature which allows you to create keys in batch

 mode. See the manual section ``Unattended key generation'' on

 how to use this.

 --generate-revocation name

 --gen-revoke name

 Generate a revocation certificate for the complete key. To only

 revoke a subkey or a key signature, use the --edit command.

 This command merely creates the revocation certificate so that

 it can be used to revoke the key if that is ever needed. To ac? Page 17/91

 tually revoke a key the created revocation certificate needs to

 be merged with the key to revoke. This is done by importing the

 revocation certificate using the --import command. Then the re?

 voked key needs to be published, which is best done by sending

 the key to a keyserver (command --send-key) and by exporting

 (--export) it to a file which is then send to frequent communi?

 cation partners.

 --generate-designated-revocation name

 --desig-revoke name

 Generate a designated revocation certificate for a key. This al?

 lows a user (with the permission of the keyholder) to revoke

 someone else's key.

 --edit-key

 Present a menu which enables you to do most of the key manage?

 ment related tasks. It expects the specification of a key on

 the command line.

 uid n Toggle selection of user ID or photographic user ID with

 index n. Use * to select all and 0 to deselect all.

 key n Toggle selection of subkey with index n or key ID n. Use

 * to select all and 0 to deselect all.

 sign Make a signature on key of user name. If the key is not

 yet signed by the default user (or the users given with

 -u), the program displays the information of the key

 again, together with its fingerprint and asks whether it

 should be signed. This question is repeated for all users

 specified with -u.

 lsign Same as "sign" but the signature is marked as non-ex?

 portable and will therefore never be used by others. This

 may be used to make keys valid only in the local environ?

 ment.

 nrsign Same as "sign" but the signature is marked as non-revoca?

 ble and can therefore never be revoked.

 tsign Make a trust signature. This is a signature that combines Page 18/91

 the notions of certification (like a regular signature),

 and trust (like the "trust" command). It is generally

 only useful in distinct communities or groups. For more

 information please read the sections ``Trust Signature''

 and ``Regular Expression'' in RFC-4880.

 Note that "l" (for local / non-exportable), "nr" (for non-revo?

 cable, and "t" (for trust) may be freely mixed and prefixed to

 "sign" to create a signature of any type desired.

 If the option --only-sign-text-ids is specified, then any non-text

 based user ids (e.g., photo IDs) will not be selected for signing.

 delsig Delete a signature. Note that it is not possible to re?

 tract a signature, once it has been send to the public

 (i.e. to a keyserver). In that case you better use

 revsig.

 revsig Revoke a signature. For every signature which has been

 generated by one of the secret keys, GnuPG asks whether a

 revocation certificate should be generated.

 check Check the signatures on all selected user IDs. With the

 extra option selfsig only self-signatures are shown.

 adduid Create an additional user ID.

 addphoto

 Create a photographic user ID. This will prompt for a

 JPEG file that will be embedded into the user ID. Note

 that a very large JPEG will make for a very large key.

 Also note that some programs will display your JPEG un?

 changed (GnuPG), and some programs will scale it to fit

 in a dialog box (PGP).

 showphoto

 Display the selected photographic user ID.

 deluid Delete a user ID or photographic user ID. Note that it

 is not possible to retract a user id, once it has been

 send to the public (i.e. to a keyserver). In that case

 you better use revuid. Page 19/91

 revuid Revoke a user ID or photographic user ID.

 primary

 Flag the current user id as the primary one, removes the

 primary user id flag from all other user ids and sets the

 timestamp of all affected self-signatures one second

 ahead. Note that setting a photo user ID as primary makes

 it primary over other photo user IDs, and setting a regu?

 lar user ID as primary makes it primary over other regu?

 lar user IDs.

 keyserver

 Set a preferred keyserver for the specified user ID(s).

 This allows other users to know where you prefer they get

 your key from. See --keyserver-options honor-keyserver-

 url for more on how this works. Setting a value of

 "none" removes an existing preferred keyserver.

 notation

 Set a name=value notation for the specified user ID(s).

 See --cert-notation for more on how this works. Setting a

 value of "none" removes all notations, setting a notation

 prefixed with a minus sign (-) removes that notation, and

 setting a notation name (without the =value) prefixed

 with a minus sign removes all notations with that name.

 pref List preferences from the selected user ID. This shows

 the actual preferences, without including any implied

 preferences.

 showpref

 More verbose preferences listing for the selected user

 ID. This shows the preferences in effect by including the

 implied preferences of 3DES (cipher), SHA-1 (digest), and

 Uncompressed (compression) if they are not already in?

 cluded in the preference list. In addition, the preferred

 keyserver and signature notations (if any) are shown.

 setpref string Page 20/91

 Set the list of user ID preferences to string for all (or

 just the selected) user IDs. Calling setpref with no ar?

 guments sets the preference list to the default (either

 built-in or set via --default-preference-list), and call?

 ing setpref with "none" as the argument sets an empty

 preference list. Use gpg --version to get a list of

 available algorithms. Note that while you can change the

 preferences on an attribute user ID (aka "photo ID"),

 GnuPG does not select keys via attribute user IDs so

 these preferences will not be used by GnuPG.

 When setting preferences, you should list the algorithms

 in the order which you'd like to see them used by someone

 else when encrypting a message to your key. If you don't

 include 3DES, it will be automatically added at the end.

 Note that there are many factors that go into choosing an

 algorithm (for example, your key may not be the only re?

 cipient), and so the remote OpenPGP application being

 used to send to you may or may not follow your exact cho?

 sen order for a given message. It will, however, only

 choose an algorithm that is present on the preference

 list of every recipient key. See also the INTEROPERABIL?

 ITY WITH OTHER OPENPGP PROGRAMS section below.

 addkey Add a subkey to this key.

 addcardkey

 Generate a subkey on a card and add it to this key.

 keytocard

 Transfer the selected secret subkey (or the primary key

 if no subkey has been selected) to a smartcard. The se?

 cret key in the keyring will be replaced by a stub if the

 key could be stored successfully on the card and you use

 the save command later. Only certain key types may be

 transferred to the card. A sub menu allows you to select

 on what card to store the key. Note that it is not possi? Page 21/91

 ble to get that key back from the card - if the card gets

 broken your secret key will be lost unless you have a

 backup somewhere.

 bkuptocard file

 Restore the given file to a card. This command may be

 used to restore a backup key (as generated during card

 initialization) to a new card. In almost all cases this

 will be the encryption key. You should use this command

 only with the corresponding public key and make sure that

 the file given as argument is indeed the backup to re?

 store. You should then select 2 to restore as encryption

 key. You will first be asked to enter the passphrase of

 the backup key and then for the Admin PIN of the card.

 keytotpm

 Transfer the selected secret subkey (or the primary key

 if no subkey has been selected) to TPM form. The secret

 key in the keyring will be replaced by the TPM represen?

 tation of that key, which can only be read by the partic?

 ular TPM that created it (so the keyfile now becomes

 locked to the laptop containing the TPM). Only certain

 key types may be transferred to the TPM (all TPM 2.0 sys?

 tems are mandated to have the rsa2048 and nistp256 algo?

 rithms but newer TPMs may have more). Note that the key

 itself is not transferred into the TPM, merely encrypted

 by the TPM in-place, so if the keyfile is deleted, the

 key will be lost. Once transferred to TPM representa?

 tion, the key file can never be converted back to non-TPM

 form and the key will die when the TPM does, so you

 should first have a backup on secure offline storage of

 the actual secret key file before conversion. It is es?

 sential to use the physical system TPM that you have rw

 permission on the TPM resource manager device

 (/dev/tpmrm0). Usually this means you must be a member Page 22/91

 of the tss group.

 delkey Remove a subkey (secondary key). Note that it is not pos?

 sible to retract a subkey, once it has been send to the

 public (i.e. to a keyserver). In that case you better

 use revkey. Also note that this only deletes the public

 part of a key.

 revkey Revoke a subkey.

 expire Change the key or subkey expiration time. If a subkey is

 selected, the expiration time of this subkey will be

 changed. With no selection, the key expiration of the

 primary key is changed.

 trust Change the owner trust value for the key. This updates

 the trust-db immediately and no save is required.

 disable

 enable Disable or enable an entire key. A disabled key can not

 normally be used for encryption.

 addrevoker

 Add a designated revoker to the key. This takes one op?

 tional argument: "sensitive". If a designated revoker is

 marked as sensitive, it will not be exported by default

 (see export-options).

 passwd Change the passphrase of the secret key.

 toggle This is dummy command which exists only for backward com?

 patibility.

 clean Compact (by removing all signatures except the selfsig)

 any user ID that is no longer usable (e.g. revoked, or

 expired). Then, remove any signatures that are not usable

 by the trust calculations. Specifically, this removes

 any signature that does not validate, any signature that

 is superseded by a later signature, revoked signatures,

 and signatures issued by keys that are not present on the

 keyring.

 minimize Page 23/91

 Make the key as small as possible. This removes all sig?

 natures from each user ID except for the most recent

 self-signature.

 change-usage

 Change the usage flags (capabilities) of the primary key

 or of subkeys. These usage flags (e.g. Certify, Sign,

 Authenticate, Encrypt) are set during key creation.

 Sometimes it is useful to have the opportunity to change

 them (for example to add Authenticate) after they have

 been created. Please take care when doing this; the al?

 lowed usage flags depend on the key algorithm.

 cross-certify

 Add cross-certification signatures to signing subkeys

 that may not currently have them. Cross-certification

 signatures protect against a subtle attack against sign?

 ing subkeys. See --require-cross-certification. All new

 keys generated have this signature by default, so this

 command is only useful to bring older keys up to date.

 save Save all changes to the keyring and quit.

 quit Quit the program without updating the keyring.

 The listing shows you the key with its secondary keys and all

 user IDs. The primary user ID is indicated by a dot, and se?

 lected keys or user IDs are indicated by an asterisk. The trust

 value is displayed with the primary key: "trust" is the assigned

 owner trust and "validity" is the calculated validity of the

 key. Validity values are also displayed for all user IDs. For

 possible values of trust, see: [trust-values].

 --sign-key name

 Signs a public key with your secret key. This is a shortcut ver?

 sion of the subcommand "sign" from --edit-key.

 --lsign-key name

 Signs a public key with your secret key but marks it as non-ex?

 portable. This is a shortcut version of the subcommand "lsign" Page 24/91

 from --edit-key.

 --quick-sign-key fpr [names]

 --quick-lsign-key fpr [names]

 Directly sign a key from the passphrase without any further user

 interaction. The fpr must be the verified primary fingerprint

 of a key in the local keyring. If no names are given, all useful

 user ids are signed; with given [names] only useful user ids

 matching one of these names are signed. By default, or if a

 name is prefixed with a '*', a case insensitive substring match

 is used. If a name is prefixed with a '=' a case sensitive ex?

 act match is done.

 The command --quick-lsign-key marks the signatures as non-ex?

 portable. If such a non-exportable signature already exists the

 --quick-sign-key turns it into a exportable signature. If you

 need to update an existing signature, for example to add or

 change notation data, you need to use the option --force-sign-

 key.

 This command uses reasonable defaults and thus does not provide

 the full flexibility of the "sign" subcommand from --edit-key.

 Its intended use is to help unattended key signing by utilizing

 a list of verified fingerprints.

 --quick-add-uid user-id new-user-id

 This command adds a new user id to an existing key. In contrast

 to the interactive sub-command adduid of --edit-key the new-

 user-id is added verbatim with only leading and trailing white

 space removed, it is expected to be UTF-8 encoded, and no checks

 on its form are applied.

 --quick-revoke-uid user-id user-id-to-revoke

 This command revokes a user ID on an existing key. It cannot be

 used to revoke the last user ID on key (some non-revoked user ID

 must remain), with revocation reason ``User ID is no longer

 valid''. If you want to specify a different revocation reason,

 or to supply supplementary revocation text, you should use the Page 25/91

 interactive sub-command revuid of --edit-key.

 --quick-revoke-sig fpr signing-fpr [names]

 This command revokes the key signatures made by signing-fpr from

 the key specified by the fingerprint fpr. With names given only

 the signatures on user ids of the key matching any of the given

 names are affected (see --quick-sign-key). If a revocation al?

 ready exists a notice is printed instead of creating a new revo?

 cation; no error is returned in this case. Note that key signa?

 ture revocations may be superseded by a newer key signature and

 in turn again revoked.

 --quick-set-primary-uid user-id primary-user-id

 This command sets or updates the primary user ID flag on an ex?

 isting key. user-id specifies the key and primary-user-id the

 user ID which shall be flagged as the primary user ID. The pri?

 mary user ID flag is removed from all other user ids and the

 timestamp of all affected self-signatures is set one second

 ahead.

 --change-passphrase user-id

 --passwd user-id

 Change the passphrase of the secret key belonging to the cer?

 tificate specified as user-id. This is a shortcut for the sub-

 command passwd of the --edit-key menu. When using together with

 the option --dry-run this will not actually change the

 passphrase but check that the current passphrase is correct.

OPTIONS

 gpg features a bunch of options to control the exact behaviour and to

 change the default configuration.

 Long options can be put in an options file (default

 "~/.gnupg/gpg.conf"). Short option names will not work - for example,

 "armor" is a valid option for the options file, while "a" is not. Do

 not write the 2 dashes, but simply the name of the option and any re?

 quired arguments. Lines with a hash ('#') as the first non-white-space

 character are ignored. Commands may be put in this file too, but that Page 26/91

 is not generally useful as the command will execute automatically with

 every execution of gpg.

 Please remember that option parsing stops as soon as a non-option is

 encountered, you can explicitly stop parsing by using the special op?

 tion --.

 How to change the configuration

 These options are used to change the configuration and most of them are

 usually found in the option file.

 --default-key name

 Use name as the default key to sign with. If this option is not

 used, the default key is the first key found in the secret

 keyring. Note that -u or --local-user overrides this option.

 This option may be given multiple times. In this case, the last

 key for which a secret key is available is used. If there is no

 secret key available for any of the specified values, GnuPG will

 not emit an error message but continue as if this option wasn't

 given.

 --default-recipient name

 Use name as default recipient if option --recipient is not used

 and don't ask if this is a valid one. name must be non-empty.

 --default-recipient-self

 Use the default key as default recipient if option --recipient

 is not used and don't ask if this is a valid one. The default

 key is the first one from the secret keyring or the one set with

 --default-key.

 --no-default-recipient

 Reset --default-recipient and --default-recipient-self. Should

 not be used in an option file.

 -v, --verbose

 Give more information during processing. If used twice, the in?

 put data is listed in detail.

 --no-verbose

 Reset verbose level to 0. Should not be used in an option file. Page 27/91

 -q, --quiet

 Try to be as quiet as possible. Should not be used in an option

 file.

 --batch

 --no-batch

 Use batch mode. Never ask, do not allow interactive commands.

 --no-batch disables this option. Note that even with a filename

 given on the command line, gpg might still need to read from

 STDIN (in particular if gpg figures that the input is a detached

 signature and no data file has been specified). Thus if you do

 not want to feed data via STDIN, you should connect STDIN to

 ?/dev/null?.

 It is highly recommended to use this option along with the op?

 tions --status-fd and --with-colons for any unattended use of

 gpg. Should not be used in an option file.

 --no-tty

 Make sure that the TTY (terminal) is never used for any output.

 This option is needed in some cases because GnuPG sometimes

 prints warnings to the TTY even if --batch is used.

 --yes Assume "yes" on most questions. Should not be used in an option

 file.

 --no Assume "no" on most questions. Should not be used in an option

 file.

 --list-options parameters

 This is a space or comma delimited string that gives options

 used when listing keys and signatures (that is, --list-keys,

 --check-signatures, --list-public-keys, --list-secret-keys, and

 the --edit-key functions). Options can be prepended with a no-

 (after the two dashes) to give the opposite meaning. The op?

 tions are:

 show-photos

 Causes --list-keys, --check-signatures, --list-public-

 keys, and --list-secret-keys to display any photo IDs at? Page 28/91

 tached to the key. Defaults to no. See also --photo-

 viewer. Does not work with --with-colons: see --attri?

 bute-fd for the appropriate way to get photo data for

 scripts and other frontends.

 show-usage

 Show usage information for keys and subkeys in the stan?

 dard key listing. This is a list of letters indicating

 the allowed usage for a key (E=encryption, S=signing,

 C=certification, A=authentication). Defaults to yes.

 show-policy-urls

 Show policy URLs in the --check-signatures listings.

 Defaults to no.

 show-notations

 show-std-notations

 show-user-notations

 Show all, IETF standard, or user-defined signature nota?

 tions in the --check-signatures listings. Defaults to no.

 show-keyserver-urls

 Show any preferred keyserver URL in the --check-signa?

 tures listings. Defaults to no.

 show-uid-validity

 Display the calculated validity of user IDs during key

 listings. Defaults to yes.

 show-unusable-uids

 Show revoked and expired user IDs in key listings. De?

 faults to no.

 show-unusable-subkeys

 Show revoked and expired subkeys in key listings. De?

 faults to no.

 show-keyring

 Display the keyring name at the head of key listings to

 show which keyring a given key resides on. Defaults to

 no. Page 29/91

 show-sig-expire

 Show signature expiration dates (if any) during --check-

 signatures listings. Defaults to no.

 show-sig-subpackets

 Include signature subpackets in the key listing. This op?

 tion can take an optional argument list of the subpackets

 to list. If no argument is passed, list all subpackets.

 Defaults to no. This option is only meaningful when using

 --with-colons along with --check-signatures.

 show-only-fpr-mbox

 For each user-id which has a valid mail address print

 only the fingerprint followed by the mail address.

 sort-sigs

 With --list-sigs and --check-sigs sort the signatures by

 keyID and creation time to make it easier to view the

 history of these signatures. The self-signature is also

 listed before other signatures. Defaults to yes.

 --verify-options parameters

 This is a space or comma delimited string that gives options

 used when verifying signatures. Options can be prepended with a

 `no-' to give the opposite meaning. The options are:

 show-photos

 Display any photo IDs present on the key that issued the

 signature. Defaults to no. See also --photo-viewer.

 show-policy-urls

 Show policy URLs in the signature being verified. De?

 faults to yes.

 show-notations

 show-std-notations

 show-user-notations

 Show all, IETF standard, or user-defined signature nota?

 tions in the signature being verified. Defaults to IETF

 standard. Page 30/91

 show-keyserver-urls

 Show any preferred keyserver URL in the signature being

 verified. Defaults to yes.

 show-uid-validity

 Display the calculated validity of the user IDs on the

 key that issued the signature. Defaults to yes.

 show-unusable-uids

 Show revoked and expired user IDs during signature veri?

 fication. Defaults to no.

 show-primary-uid-only

 Show only the primary user ID during signature verifica?

 tion. That is all the AKA lines as well as photo Ids are

 not shown with the signature verification status.

 --enable-large-rsa

 --disable-large-rsa

 With --generate-key and --batch, enable the creation of RSA se?

 cret keys as large as 8192 bit. Note: 8192 bit is more than is

 generally recommended. These large keys don't significantly im?

 prove security, but they are more expensive to use, and their

 signatures and certifications are larger. This option is only

 available if the binary was build with large-secmem support.

 --enable-dsa2

 --disable-dsa2

 Enable hash truncation for all DSA keys even for old DSA Keys up

 to 1024 bit. This is also the default with --openpgp. Note

 that older versions of GnuPG also required this flag to allow

 the generation of DSA larger than 1024 bit.

 --photo-viewer string

 This is the command line that should be run to view a photo ID.

 "%i" will be expanded to a filename containing the photo. "%I"

 does the same, except the file will not be deleted once the

 viewer exits. Other flags are "%k" for the key ID, "%K" for the

 long key ID, "%f" for the key fingerprint, "%t" for the exten? Page 31/91

 sion of the image type (e.g. "jpg"), "%T" for the MIME type of

 the image (e.g. "image/jpeg"), "%v" for the single-character

 calculated validity of the image being viewed (e.g. "f"), "%V"

 for the calculated validity as a string (e.g. "full"), "%U" for

 a base32 encoded hash of the user ID, and "%%" for an actual

 percent sign. If neither %i or %I are present, then the photo

 will be supplied to the viewer on standard input.

 On Unix the default viewer is xloadimage -fork -quiet -title

 'KeyID 0x%k' STDIN with a fallback to display -title 'KeyID

 0x%k' %i and finally to xdg-open %i. On Windows !ShellExecute

 400 %i is used; here the command is a meta command to use that

 API call followed by a wait time in milliseconds which is used

 to give the viewer time to read the temporary image file before

 gpg deletes it again. Note that if your image viewer program is

 not secure, then executing it from gpg does not make it secure.

 --exec-path string

 Sets a list of directories to search for photo viewers If not

 provided photo viewers use the PATH environment variable.

 --keyring file

 Add file to the current list of keyrings. If file begins with a

 tilde and a slash, these are replaced by the $HOME directory. If

 the filename does not contain a slash, it is assumed to be in

 the GnuPG home directory ("~/.gnupg" unless --homedir or

 $GNUPGHOME is used).

 Note that this adds a keyring to the current list. If the intent

 is to use the specified keyring alone, use --keyring along with

 --no-default-keyring.

 If the option --no-keyring has been used no keyrings will be

 used at all.

 Note that if the option use-keyboxd is enabled in ?common.conf?,

 no keyrings are used at all and keys are all maintained by the

 keyboxd process in its own database.

 --primary-keyring file Page 32/91

 This is a varian of --keyring and designates file as the primary

 public keyring. This means that newly imported keys (via --im?

 port or keyserver --recv-from) will go to this keyring.

 --secret-keyring file

 This is an obsolete option and ignored. All secret keys are

 stored in the ?private-keys-v1.d? directory below the GnuPG home

 directory.

 --trustdb-name file

 Use file instead of the default trustdb. If file begins with a

 tilde and a slash, these are replaced by the $HOME directory. If

 the filename does not contain a slash, it is assumed to be in

 the GnuPG home directory (?~/.gnupg? if --homedir or $GNUPGHOME

 is not used).

 --homedir dir

 Set the name of the home directory to dir. If this option is not

 used, the home directory defaults to ?~/.gnupg?. It is only

 recognized when given on the command line. It also overrides

 any home directory stated through the environment variable

 ?GNUPGHOME? or (on Windows systems) by means of the Registry en?

 try HKCU\Software\GNU\GnuPG:HomeDir.

 On Windows systems it is possible to install GnuPG as a portable

 application. In this case only this command line option is con?

 sidered, all other ways to set a home directory are ignored.

 To install GnuPG as a portable application under Windows, create

 an empty file named ?gpgconf.ctl? in the same directory as the

 tool ?gpgconf.exe?. The root of the installation is then that

 directory; or, if ?gpgconf.exe? has been installed directly be?

 low a directory named ?bin?, its parent directory. You also

 need to make sure that the following directories exist and are

 writable: ?ROOT/home? for the GnuPG home and

 ?ROOT/var/cache/gnupg? for internal cache files.

 --display-charset name

 Set the name of the native character set. This is used to con? Page 33/91

 vert some informational strings like user IDs to the proper

 UTF-8 encoding. Note that this has nothing to do with the char?

 acter set of data to be encrypted or signed; GnuPG does not re?

 code user-supplied data. If this option is not used, the default

 character set is determined from the current locale. A verbosity

 level of 3 shows the chosen set. This option should not be used

 on Windows. Valid values for name are:

 iso-8859-1

 This is the Latin 1 set.

 iso-8859-2

 The Latin 2 set.

 iso-8859-15

 This is currently an alias for the Latin 1 set.

 koi8-r The usual Russian set (RFC-1489).

 utf-8 Bypass all translations and assume that the OS uses na?

 tive UTF-8 encoding.

 --utf8-strings

 --no-utf8-strings

 Assume that command line arguments are given as UTF-8 strings.

 The default (--no-utf8-strings) is to assume that arguments are

 encoded in the character set as specified by --display-charset.

 These options affect all following arguments. Both options may

 be used multiple times. This option should not be used in an

 option file.

 This option has no effect on Windows. There the internal used

 UTF-8 encoding is translated for console input and output. The

 command line arguments are expected as Unicode and translated to

 UTF-8. Thus when calling this program from another, make sure

 to use the Unicode version of CreateProcess.

 --options file

 Read options from file and do not try to read them from the de?

 fault options file in the homedir (see --homedir). This option

 is ignored if used in an options file. Page 34/91

 --no-options

 Shortcut for --options /dev/null. This option is detected before

 an attempt to open an option file. Using this option will also

 prevent the creation of a ?~/.gnupg? homedir.

 -z n

 --compress-level n

 --bzip2-compress-level n

 Set compression level to n for the ZIP and ZLIB compression al?

 gorithms. The default is to use the default compression level of

 zlib (normally 6). --bzip2-compress-level sets the compression

 level for the BZIP2 compression algorithm (defaulting to 6 as

 well). This is a different option from --compress-level since

 BZIP2 uses a significant amount of memory for each additional

 compression level. -z sets both. A value of 0 for n disables

 compression.

 --bzip2-decompress-lowmem

 Use a different decompression method for BZIP2 compressed files.

 This alternate method uses a bit more than half the memory, but

 also runs at half the speed. This is useful under extreme low

 memory circumstances when the file was originally compressed at

 a high --bzip2-compress-level.

 --mangle-dos-filenames

 --no-mangle-dos-filenames

 Older version of Windows cannot handle filenames with more than

 one dot. --mangle-dos-filenames causes GnuPG to replace (rather

 than add to) the extension of an output filename to avoid this

 problem. This option is off by default and has no effect on non-

 Windows platforms.

 --ask-cert-level

 --no-ask-cert-level

 When making a key signature, prompt for a certification level.

 If this option is not specified, the certification level used is

 set via --default-cert-level. See --default-cert-level for in? Page 35/91

 formation on the specific levels and how they are used. --no-

 ask-cert-level disables this option. This option defaults to no.

 --default-cert-level n

 The default to use for the check level when signing a key.

 0 means you make no particular claim as to how carefully you

 verified the key.

 1 means you believe the key is owned by the person who claims to

 own it but you could not, or did not verify the key at all. This

 is useful for a "persona" verification, where you sign the key

 of a pseudonymous user.

 2 means you did casual verification of the key. For example,

 this could mean that you verified the key fingerprint and

 checked the user ID on the key against a photo ID.

 3 means you did extensive verification of the key. For example,

 this could mean that you verified the key fingerprint with the

 owner of the key in person, and that you checked, by means of a

 hard to forge document with a photo ID (such as a passport) that

 the name of the key owner matches the name in the user ID on the

 key, and finally that you verified (by exchange of email) that

 the email address on the key belongs to the key owner.

 Note that the examples given above for levels 2 and 3 are just

 that: examples. In the end, it is up to you to decide just what

 "casual" and "extensive" mean to you.

 This option defaults to 0 (no particular claim).

 --min-cert-level

 When building the trust database, treat any signatures with a

 certification level below this as invalid. Defaults to 2, which

 disregards level 1 signatures. Note that level 0 "no particular

 claim" signatures are always accepted.

 --trusted-key long key ID or fingerprint

 Assume that the specified key (which should be given as finger?

 print) is as trustworthy as one of your own secret keys. This

 option is useful if you don't want to keep your secret keys (or Page 36/91

 one of them) online but still want to be able to check the va?

 lidity of a given recipient's or signator's key. If the given

 key is not locally available but an LDAP keyserver is configured

 the missing key is imported from that server.

 --trust-model {pgp|classic|tofu|tofu+pgp|direct|always|auto}

 Set what trust model GnuPG should follow. The models are:

 pgp This is the Web of Trust combined with trust signatures

 as used in PGP 5.x and later. This is the default trust

 model when creating a new trust database.

 classic

 This is the standard Web of Trust as introduced by PGP 2.

 tofu

 TOFU stands for Trust On First Use. In this trust model,

 the first time a key is seen, it is memorized. If later

 another key with a user id with the same email address is

 seen, both keys are marked as suspect. In that case, the

 next time either is used, a warning is displayed describ?

 ing the conflict, why it might have occurred (either the

 user generated a new key and failed to cross sign the old

 and new keys, the key is forgery, or a man-in-the-middle

 attack is being attempted), and the user is prompted to

 manually confirm the validity of the key in question.

 Because a potential attacker is able to control the email

 address and thereby circumvent the conflict detection al?

 gorithm by using an email address that is similar in ap?

 pearance to a trusted email address, whenever a message

 is verified, statistics about the number of messages

 signed with the key are shown. In this way, a user can

 easily identify attacks using fake keys for regular cor?

 respondents.

 When compared with the Web of Trust, TOFU offers signifi?

 cantly weaker security guarantees. In particular, TOFU

 only helps ensure consistency (that is, that the binding Page 37/91

 between a key and email address doesn't change). A major

 advantage of TOFU is that it requires little maintenance

 to use correctly. To use the web of trust properly, you

 need to actively sign keys and mark users as trusted in?

 troducers. This is a time-consuming process and anecdo?

 tal evidence suggests that even security-conscious users

 rarely take the time to do this thoroughly and instead

 rely on an ad-hoc TOFU process.

 In the TOFU model, policies are associated with bindings

 between keys and email addresses (which are extracted

 from user ids and normalized). There are five policies,

 which can be set manually using the --tofu-policy option.

 The default policy can be set using the --tofu-default-

 policy option.

 The TOFU policies are: auto, good, unknown, bad and ask.

 The auto policy is used by default (unless overridden by

 --tofu-default-policy) and marks a binding as marginally

 trusted. The good, unknown and bad policies mark a bind?

 ing as fully trusted, as having unknown trust or as hav?

 ing trust never, respectively. The unknown policy is

 useful for just using TOFU to detect conflicts, but to

 never assign positive trust to a binding. The final pol?

 icy, ask prompts the user to indicate the binding's

 trust. If batch mode is enabled (or input is inappropri?

 ate in the context), then the user is not prompted and

 the undefined trust level is returned.

 tofu+pgp

 This trust model combines TOFU with the Web of Trust.

 This is done by computing the trust level for each model

 and then taking the maximum trust level where the trust

 levels are ordered as follows: unknown < undefined < mar?

 ginal < fully < ultimate < expired < never.

 By setting --tofu-default-policy=unknown, this model can Page 38/91

 be used to implement the web of trust with TOFU's con?

 flict detection algorithm, but without its assignment of

 positive trust values, which some security-conscious

 users don't like.

 direct Key validity is set directly by the user and not calcu?

 lated via the Web of Trust. This model is solely based

 on the key and does not distinguish user IDs. Note that

 when changing to another trust model the trust values as?

 signed to a key are transformed into ownertrust values,

 which also indicate how you trust the owner of the key to

 sign other keys.

 always Skip key validation and assume that used keys are always

 fully valid. You generally won't use this unless you are

 using some external validation scheme. This option also

 suppresses the "[uncertain]" tag printed with signature

 checks when there is no evidence that the user ID is

 bound to the key. Note that this trust model still does

 not allow the use of expired, revoked, or disabled keys.

 auto Select the trust model depending on whatever the internal

 trust database says. This is the default model if such a

 database already exists. Note that a tofu trust model is

 not considered here and must be enabled explicitly.

 --auto-key-locate mechanisms

 --no-auto-key-locate

 GnuPG can automatically locate and retrieve keys as needed using

 this option. This happens when encrypting to an email address

 (in the "user@example.com" form), and there are no "user@exam?

 ple.com" keys on the local keyring. This option takes any num?

 ber of the mechanisms listed below, in the order they are to be

 tried. Instead of listing the mechanisms as comma delimited ar?

 guments, the option may also be given several times to add more

 mechanism. The option --no-auto-key-locate or the mechanism

 "clear" resets the list. The default is "local,wkd". Page 39/91

 cert Locate a key using DNS CERT, as specified in RFC-4398.

 dane Locate a key using DANE, as specified in draft-ietf-dane-

 openpgpkey-05.txt.

 wkd Locate a key using the Web Key Directory protocol.

 ldap Using DNS Service Discovery, check the domain in question

 for any LDAP keyservers to use. If this fails, attempt

 to locate the key using the PGP Universal method of

 checking ?ldap://keys.(thedomain)?.

 ntds Locate the key using the Active Directory (Windows only).

 This method also allows to search by fingerprint using

 the command --locate-external-key.

 keyserver

 Locate a key using a keyserver. This method also allows

 to search by fingerprint using the command --locate-ex?

 ternal-key if any of the configured keyservers is an LDAP

 server.

 keyserver-URL

 In addition, a keyserver URL as used in the dirmngr con?

 figuration may be used here to query that particular key?

 server. This method also allows to search by fingerprint

 using the command --locate-external-key if the URL speci?

 fies an LDAP server.

 local Locate the key using the local keyrings. This mechanism

 allows the user to select the order a local key lookup is

 done. Thus using ?--auto-key-locate local? is identical

 to --no-auto-key-locate.

 nodefault

 This flag disables the standard local key lookup, done

 before any of the mechanisms defined by the --auto-key-

 locate are tried. The position of this mechanism in the

 list does not matter. It is not required if local is

 also used.

 clear Clear all defined mechanisms. This is useful to override Page 40/91

 mechanisms given in a config file. Note that a nodefault

 in mechanisms will also be cleared unless it is given af?

 ter the clear.

 --auto-key-import

 --no-auto-key-import

 This is an offline mechanism to get a missing key for signature

 verification and for later encryption to this key. If this op?

 tion is enabled and a signature includes an embedded key, that

 key is used to verify the signature and on verification success

 the key is imported. The default is --no-auto-key-import.

 On the sender (signing) site the option --include-key-block

 needs to be used to put the public part of the signing key as

 ?Key Block subpacket? into the signature.

 --auto-key-retrieve

 --no-auto-key-retrieve

 These options enable or disable the automatic retrieving of keys

 from a keyserver when verifying signatures made by keys that are

 not on the local keyring. The default is --no-auto-key-re?

 trieve.

 The order of methods tried to lookup the key is:

 1. If the option --auto-key-import is set and the signatures in?

 cludes an embedded key, that key is used to verify the signature

 and on verification success that key is imported.

 2. If a preferred keyserver is specified in the signature and

 the option honor-keyserver-url is active (which is not the de?

 fault), that keyserver is tried. Note that the creator of the

 signature uses the option --sig-keyserver-url to specify the

 preferred keyserver for data signatures.

 3. If the signature has the Signer's UID set (e.g. using

 --sender while creating the signature) a Web Key Directory (WKD)

 lookup is done. This is the default configuration but can be

 disabled by removing WKD from the auto-key-locate list or by us?

 ing the option --disable-signer-uid. Page 41/91

 4. If any keyserver is configured and the Issuer Fingerprint is

 part of the signature (since GnuPG 2.1.16), the configured key?

 servers are tried.

 Note that this option makes a "web bug" like behavior possible.

 Keyserver or Web Key Directory operators can see which keys you

 request, so by sending you a message signed by a brand new key

 (which you naturally will not have on your local keyring), the

 operator can tell both your IP address and the time when you

 verified the signature.

 --keyid-format {none|short|0xshort|long|0xlong}

 Select how to display key IDs. "none" does not show the key ID

 at all but shows the fingerprint in a separate line. "short" is

 the traditional 8-character key ID. "long" is the more accurate

 (but less convenient) 16-character key ID. Add an "0x" to ei?

 ther to include an "0x" at the beginning of the key ID, as in

 0x99242560. Note that this option is ignored if the option

 --with-colons is used.

 --keyserver name

 This option is deprecated - please use the --keyserver in ?dirm?

 ngr.conf? instead.

 Use name as your keyserver. This is the server that --receive-

 keys, --send-keys, and --search-keys will communicate with to

 receive keys from, send keys to, and search for keys on. The

 format of the name is a URI: `scheme:[//]keyservername[:port]'

 The scheme is the type of keyserver: "hkp"/"hkps" for the HTTP

 (or compatible) keyservers or "ldap"/"ldaps" for the LDAP key?

 servers. Note that your particular installation of GnuPG may

 have other keyserver types available as well. Keyserver schemes

 are case-insensitive.

 Most keyservers synchronize with each other, so there is gener?

 ally no need to send keys to more than one server. The keyserver

 hkp://keys.gnupg.net uses round robin DNS to give a different

 keyserver each time you use it. Page 42/91

 --keyserver-options {name=value}

 This is a space or comma delimited string that gives options for

 the keyserver. Options can be prefixed with a `no-' to give the

 opposite meaning. Valid import-options or export-options may be

 used here as well to apply to importing (--recv-key) or export?

 ing (--send-key) a key from a keyserver. While not all options

 are available for all keyserver types, some common options are:

 include-revoked

 When searching for a key with --search-keys, include keys

 that are marked on the keyserver as revoked. Note that

 not all keyservers differentiate between revoked and un?

 revoked keys, and for such keyservers this option is

 meaningless. Note also that most keyservers do not have

 cryptographic verification of key revocations, and so

 turning this option off may result in skipping keys that

 are incorrectly marked as revoked.

 include-disabled

 When searching for a key with --search-keys, include keys

 that are marked on the keyserver as disabled. Note that

 this option is not used with HKP keyservers.

 auto-key-retrieve

 This is an obsolete alias for the option auto-key-re?

 trieve. Please do not use it; it will be removed in fu?

 ture versions..

 honor-keyserver-url

 When using --refresh-keys, if the key in question has a

 preferred keyserver URL, then use that preferred key?

 server to refresh the key from. In addition, if auto-key-

 retrieve is set, and the signature being verified has a

 preferred keyserver URL, then use that preferred key?

 server to fetch the key from. Note that this option in?

 troduces a "web bug": The creator of the key can see when

 the keys is refreshed. Thus this option is not enabled Page 43/91

 by default.

 include-subkeys

 When receiving a key, include subkeys as potential tar?

 gets. Note that this option is not used with HKP key?

 servers, as they do not support retrieving keys by subkey

 id.

 timeout

 http-proxy=value

 verbose

 debug

 check-cert

 ca-cert-file

 These options have no more function since GnuPG 2.1. Use

 the dirmngr configuration options instead.

 The default list of options is: "self-sigs-only, import-clean, repair-

 keys, repair-pks-subkey-bug, export-attributes". However, if the actual

 used source is an LDAP server "no-self-sigs-only" is assumed unless

 "self-sigs-only" has been explictly configured.

 --completes-needed n

 Number of completely trusted users to introduce a new key signer

 (defaults to 1).

 --marginals-needed n

 Number of marginally trusted users to introduce a new key signer

 (defaults to 3)

 --tofu-default-policy {auto|good|unknown|bad|ask}

 The default TOFU policy (defaults to auto). For more informa?

 tion about the meaning of this option, see: [trust-model-tofu].

 --max-cert-depth n

 Maximum depth of a certification chain (default is 5).

 --no-sig-cache

 Do not cache the verification status of key signatures. Caching

 gives a much better performance in key listings. However, if you

 suspect that your public keyring is not safe against write modi? Page 44/91

 fications, you can use this option to disable the caching. It

 probably does not make sense to disable it because all kind of

 damage can be done if someone else has write access to your pub?

 lic keyring.

 --auto-check-trustdb

 --no-auto-check-trustdb

 If GnuPG feels that its information about the Web of Trust has

 to be updated, it automatically runs the --check-trustdb command

 internally. This may be a time consuming process. --no-auto-

 check-trustdb disables this option.

 --use-agent

 --no-use-agent

 This is dummy option. gpg always requires the agent.

 --gpg-agent-info

 This is dummy option. It has no effect when used with gpg.

 --agent-program file

 Specify an agent program to be used for secret key operations.

 The default value is determined by running gpgconf with the op?

 tion --list-dirs. Note that the pipe symbol (|) is used for a

 regression test suite hack and may thus not be used in the file

 name.

 --dirmngr-program file

 Specify a dirmngr program to be used for keyserver access. The

 default value is ?/usr/bin/dirmngr?.

 --disable-dirmngr

 Entirely disable the use of the Dirmngr.

 --no-autostart

 Do not start the gpg-agent or the dirmngr if it has not yet been

 started and its service is required. This option is mostly use?

 ful on machines where the connection to gpg-agent has been redi?

 rected to another machines. If dirmngr is required on the re?

 mote machine, it may be started manually using gpgconf --launch

 dirmngr. Page 45/91

 --lock-once

 Lock the databases the first time a lock is requested and do not

 release the lock until the process terminates.

 --lock-multiple

 Release the locks every time a lock is no longer needed. Use

 this to override a previous --lock-once from a config file.

 --lock-never

 Disable locking entirely. This option should be used only in

 very special environments, where it can be assured that only one

 process is accessing those files. A bootable floppy with a

 stand-alone encryption system will probably use this. Improper

 usage of this option may lead to data and key corruption.

 --exit-on-status-write-error

 This option will cause write errors on the status FD to immedi?

 ately terminate the process. That should in fact be the default

 but it never worked this way and thus we need an option to en?

 able this, so that the change won't break applications which

 close their end of a status fd connected pipe too early. Using

 this option along with --enable-progress-filter may be used to

 cleanly cancel long running gpg operations.

 --limit-card-insert-tries n

 With n greater than 0 the number of prompts asking to insert a

 smartcard gets limited to N-1. Thus with a value of 1 gpg won't

 at all ask to insert a card if none has been inserted at

 startup. This option is useful in the configuration file in case

 an application does not know about the smartcard support and

 waits ad infinitum for an inserted card.

 --no-random-seed-file

 GnuPG uses a file to store its internal random pool over invoca?

 tions. This makes random generation faster; however sometimes

 write operations are not desired. This option can be used to

 achieve that with the cost of slower random generation.

 --no-greeting Page 46/91

 Suppress the initial copyright message.

 --no-secmem-warning

 Suppress the warning about "using insecure memory".

 --no-permission-warning

 Suppress the warning about unsafe file and home directory

 (--homedir) permissions. Note that the permission checks that

 GnuPG performs are not intended to be authoritative, but rather

 they simply warn about certain common permission problems. Do

 not assume that the lack of a warning means that your system is

 secure.

 Note that the warning for unsafe --homedir permissions cannot be

 suppressed in the gpg.conf file, as this would allow an attacker

 to place an unsafe gpg.conf file in place, and use this file to

 suppress warnings about itself. The --homedir permissions warn?

 ing may only be suppressed on the command line.

 --require-secmem

 --no-require-secmem

 Refuse to run if GnuPG cannot get secure memory. Defaults to no

 (i.e. run, but give a warning).

 --require-cross-certification

 --no-require-cross-certification

 When verifying a signature made from a subkey, ensure that the

 cross certification "back signature" on the subkey is present

 and valid. This protects against a subtle attack against sub?

 keys that can sign. Defaults to --require-cross-certification

 for gpg.

 --expert

 --no-expert

 Allow the user to do certain nonsensical or "silly" things like

 signing an expired or revoked key, or certain potentially incom?

 patible things like generating unusual key types. This also dis?

 ables certain warning messages about potentially incompatible

 actions. As the name implies, this option is for experts only. Page 47/91

 If you don't fully understand the implications of what it allows

 you to do, leave this off. --no-expert disables this option.

 Key related options

 --recipient name

 -r Encrypt for user id name. If this option or --hidden-recipient

 is not specified, GnuPG asks for the user-id unless --default-

 recipient is given.

 --hidden-recipient name

 -R Encrypt for user ID name, but hide the key ID of this user's

 key. This option helps to hide the receiver of the message and

 is a limited countermeasure against traffic analysis. If this

 option or --recipient is not specified, GnuPG asks for the user

 ID unless --default-recipient is given.

 --recipient-file file

 -f This option is similar to --recipient except that it encrypts to

 a key stored in the given file. file must be the name of a file

 containing exactly one key. gpg assumes that the key in this

 file is fully valid.

 --hidden-recipient-file file

 -F This option is similar to --hidden-recipient except that it en?

 crypts to a key stored in the given file. file must be the name

 of a file containing exactly one key. gpg assumes that the key

 in this file is fully valid.

 --encrypt-to name

 Same as --recipient but this one is intended for use in the op?

 tions file and may be used with your own user-id as an "encrypt-

 to-self". These keys are only used when there are other recipi?

 ents given either by use of --recipient or by the asked user id.

 No trust checking is performed for these user ids and even dis?

 abled keys can be used.

 --hidden-encrypt-to name

 Same as --hidden-recipient but this one is intended for use in

 the options file and may be used with your own user-id as a hid? Page 48/91

 den "encrypt-to-self". These keys are only used when there are

 other recipients given either by use of --recipient or by the

 asked user id. No trust checking is performed for these user

 ids and even disabled keys can be used.

 --no-encrypt-to

 Disable the use of all --encrypt-to and --hidden-encrypt-to

 keys.

 --group {name=value}

 Sets up a named group, which is similar to aliases in email pro?

 grams. Any time the group name is a recipient (-r or --recipi?

 ent), it will be expanded to the values specified. Multiple

 groups with the same name are automatically merged into a single

 group.

 The values are key IDs or fingerprints, but any key description

 is accepted. Note that a value with spaces in it will be treated

 as two different values. Note also there is only one level of

 expansion --- you cannot make an group that points to another

 group. When used from the command line, it may be necessary to

 quote the argument to this option to prevent the shell from

 treating it as multiple arguments.

 --ungroup name

 Remove a given entry from the --group list.

 --no-groups

 Remove all entries from the --group list.

 --local-user name

 -u Use name as the key to sign with. Note that this option over?

 rides --default-key.

 --sender mbox

 This option has two purposes. mbox must either be a complete

 user ID containing a proper mail address or just a plain mail

 address. The option can be given multiple times.

 When creating a signature this option tells gpg the signing

 key's user id used to make the signature and embeds that user ID Page 49/91

 into the created signature (using OpenPGP's ``Signer's User ID''

 subpacket). If the option is given multiple times a suitable

 user ID is picked. However, if the signing key was specified

 directly by using a mail address (i.e. not by using a finger?

 print or key ID) this option is used and the mail address is em?

 bedded in the created signature.

 When verifying a signature mbox is used to restrict the informa?

 tion printed by the TOFU code to matching user IDs. If the op?

 tion is used and the signature contains a ``Signer's User ID''

 subpacket that information is is also used to restrict the

 printed information. Note that GnuPG considers only the mail

 address part of a User ID.

 If this option or the said subpacket is available the TRUST

 lines as printed by option status-fd correspond to the corre?

 sponding User ID; if no User ID is known the TRUST lines are

 computed directly on the key and do not give any information

 about the User ID. In the latter case it his highly recommended

 to scripts and other frontends to evaluate the VALIDSIG line,

 retrieve the key and print all User IDs along with their valid?

 ity (trust) information.

 --try-secret-key name

 For hidden recipients GPG needs to know the keys to use for

 trial decryption. The key set with --default-key is always

 tried first, but this is often not sufficient. This option al?

 lows setting more keys to be used for trial decryption. Al?

 though any valid user-id specification may be used for name it

 makes sense to use at least the long keyid to avoid ambiguities.

 Note that gpg-agent might pop up a pinentry for a lot keys to do

 the trial decryption. If you want to stop all further trial de?

 cryption you may use close-window button instead of the cancel

 button.

 --try-all-secrets

 Don't look at the key ID as stored in the message but try all Page 50/91

 secret keys in turn to find the right decryption key. This op?

 tion forces the behaviour as used by anonymous recipients (cre?

 ated by using --throw-keyids or --hidden-recipient) and might

 come handy in case where an encrypted message contains a bogus

 key ID.

 --skip-hidden-recipients

 --no-skip-hidden-recipients

 During decryption skip all anonymous recipients. This option

 helps in the case that people use the hidden recipients feature

 to hide their own encrypt-to key from others. If one has many

 secret keys this may lead to a major annoyance because all keys

 are tried in turn to decrypt something which was not really in?

 tended for it. The drawback of this option is that it is cur?

 rently not possible to decrypt a message which includes real

 anonymous recipients.

 Input and Output

 --armor

 -a Create ASCII armored output. The default is to create the bi?

 nary OpenPGP format.

 --no-armor

 Assume the input data is not in ASCII armored format.

 --output file

 -o file

 Write output to file. To write to stdout use - as the filename.

 --max-output n

 This option sets a limit on the number of bytes that will be

 generated when processing a file. Since OpenPGP supports various

 levels of compression, it is possible that the plaintext of a

 given message may be significantly larger than the original

 OpenPGP message. While GnuPG works properly with such messages,

 there is often a desire to set a maximum file size that will be

 generated before processing is forced to stop by the OS limits.

 Defaults to 0, which means "no limit". Page 51/91

 --chunk-size n

 The AEAD encryption mode encrypts the data in chunks so that a

 receiving side can check for transmission errors or tampering at

 the end of each chunk and does not need to delay this until all

 data has been received. The used chunk size is 2^n byte. The

 lowest allowed value for n is 6 (64 byte) and the largest is the

 default of 22 which creates chunks not larger than 4 MiB.

 --input-size-hint n

 This option can be used to tell GPG the size of the input data

 in bytes. n must be a positive base-10 number. This option is

 only useful if the input is not taken from a file. GPG may use

 this hint to optimize its buffer allocation strategy. It is

 also used by the --status-fd line ``PROGRESS'' to provide a

 value for ``total'' if that is not available by other means.

 --key-origin string[,url]

 gpg can track the origin of a key. Certain origins are implic?

 itly known (e.g. keyserver, web key directory) and set. For a

 standard import the origin of the keys imported can be set with

 this option. To list the possible values use "help" for string.

 Some origins can store an optional url argument. That URL can

 appended to string after a comma.

 --import-options parameters

 This is a space or comma delimited string that gives options for

 importing keys. Options can be prepended with a `no-' to give

 the opposite meaning. The options are:

 import-local-sigs

 Allow importing key signatures marked as "local". This is

 not generally useful unless a shared keyring scheme is

 being used. Defaults to no.

 keep-ownertrust

 Normally possible still existing ownertrust values of a

 key are cleared if a key is imported. This is in general

 desirable so that a formerly deleted key does not auto? Page 52/91

 matically gain an ownertrust values merely due to import.

 On the other hand it is sometimes necessary to re-import

 a trusted set of keys again but keeping already assigned

 ownertrust values. This can be achieved by using this

 option.

 repair-pks-subkey-bug

 During import, attempt to repair the damage caused by the

 PKS keyserver bug (pre version 0.9.6) that mangles keys

 with multiple subkeys. Note that this cannot completely

 repair the damaged key as some crucial data is removed by

 the keyserver, but it does at least give you back one

 subkey. Defaults to no for regular --import and to yes

 for keyserver --receive-keys.

 import-show

 show-only

 Show a listing of the key as imported right before it is

 stored. This can be combined with the option --dry-run

 to only look at keys; the option show-only is a shortcut

 for this combination. The command --show-keys is another

 shortcut for this. Note that suffixes like '#' for "sec"

 and "sbb" lines may or may not be printed.

 import-export

 Run the entire import code but instead of storing the key

 to the local keyring write it to the output. The export

 option export-dane affect the output. This option can

 for example be used to remove all invalid parts from a

 key without the need to store it.

 merge-only

 During import, allow key updates to existing keys, but do

 not allow any new keys to be imported. Defaults to no.

 import-clean

 After import, compact (remove all signatures except the

 self-signature) any user IDs from the new key that are Page 53/91

 not usable. Then, remove any signatures from the new key

 that are not usable. This includes signatures that were

 issued by keys that are not present on the keyring. This

 option is the same as running the --edit-key command

 "clean" after import. Defaults to no.

 self-sigs-only

 Accept only self-signatures while importing a key. All

 other key signatures are skipped at an early import

 stage. This option can be used with keyserver-options to

 mitigate attempts to flood a key with bogus signatures

 from a keyserver. The drawback is that all other valid

 key signatures, as required by the Web of Trust are also

 not imported. Note that when using this option along

 with import-clean it suppresses the final clean step af?

 ter merging the imported key into the existing key.

 repair-keys

 After import, fix various problems with the keys. For

 example, this reorders signatures, and strips duplicate

 signatures. Defaults to yes.

 bulk-import

 When used the keyboxd (option use-keyboxd in ?com?

 mon.conf?) does the import within a single transaction.

 import-minimal

 Import the smallest key possible. This removes all signa?

 tures except the most recent self-signature on each user

 ID. This option is the same as running the --edit-key

 command "minimize" after import. Defaults to no.

 restore

 import-restore

 Import in key restore mode. This imports all data which

 is usually skipped during import; including all GnuPG

 specific data. All other contradicting options are over?

 ridden. Page 54/91

 --import-filter {name=expr}

 --export-filter {name=expr}

 These options define an import/export filter which are applied

 to the imported/exported keyblock right before it will be

 stored/written. name defines the type of filter to use, expr

 the expression to evaluate. The option can be used several

 times which then appends more expression to the same name.

 The available filter types are:

 keep-uid

 This filter will keep a user id packet and its dependent

 packets in the keyblock if the expression evaluates to

 true.

 drop-subkey

 This filter drops the selected subkeys. Currently only

 implemented for --export-filter.

 drop-sig

 This filter drops the selected key signatures on user

 ids. Self-signatures are not considered. Currently only

 implemented for --import-filter.

 For the syntax of the expression see the chapter "FILTER EXPRESSIONS".

 The property names for the expressions depend on the actual filter type

 and are indicated in the following table.

 The available properties are:

 uid A string with the user id. (keep-uid)

 mbox The addr-spec part of a user id with mailbox or the empty

 string. (keep-uid)

 key_algo

 A number with the public key algorithm of a key or subkey

 packet. (drop-subkey)

 key_created

 key_created_d

 The first is the timestamp a public key or subkey packet

 was created. The second is the same but given as an ISO Page 55/91

 string, e.g. "2016-08-17". (drop-subkey)

 fpr The hexified fingerprint of the current subkey or primary

 key. (drop-subkey)

 primary

 Boolean indicating whether the user id is the primary

 one. (keep-uid)

 expired

 Boolean indicating whether a user id (keep-uid), a key

 (drop-subkey), or a signature (drop-sig) expired.

 revoked

 Boolean indicating whether a user id (keep-uid) or a key

 (drop-subkey) has been revoked.

 disabled

 Boolean indicating whether a primary key is disabled.

 (not used)

 secret Boolean indicating whether a key or subkey is a secret

 one. (drop-subkey)

 usage A string indicating the usage flags for the subkey, from

 the sequence ``ecsa?''. For example, a subkey capable of

 just signing and authentication would be an exact match

 for ``sa''. (drop-subkey)

 sig_created

 sig_created_d

 The first is the timestamp a signature packet was cre?

 ated. The second is the same but given as an ISO date

 string, e.g. "2016-08-17". (drop-sig)

 sig_algo

 A number with the public key algorithm of a signature

 packet. (drop-sig)

 sig_digest_algo

 A number with the digest algorithm of a signature packet.

 (drop-sig)

 --export-options parameters Page 56/91

 This is a space or comma delimited string that gives options for

 exporting keys. Options can be prepended with a `no-' to give

 the opposite meaning. The options are:

 export-local-sigs

 Allow exporting key signatures marked as "local". This is

 not generally useful unless a shared keyring scheme is

 being used. Defaults to no.

 export-attributes

 Include attribute user IDs (photo IDs) while exporting.

 Not including attribute user IDs is useful to export keys

 that are going to be used by an OpenPGP program that does

 not accept attribute user IDs. Defaults to yes.

 export-sensitive-revkeys

 Include designated revoker information that was marked as

 "sensitive". Defaults to no.

 backup

 export-backup

 Export for use as a backup. The exported data includes

 all data which is needed to restore the key or keys later

 with GnuPG. The format is basically the OpenPGP format

 but enhanced with GnuPG specific data. All other contra?

 dicting options are overridden.

 export-clean

 Compact (remove all signatures from) user IDs on the key

 being exported if the user IDs are not usable. Also, do

 not export any signatures that are not usable. This in?

 cludes signatures that were issued by keys that are not

 present on the keyring. This option is the same as run?

 ning the --edit-key command "clean" before export except

 that the local copy of the key is not modified. Defaults

 to no.

 export-minimal

 Export the smallest key possible. This removes all signa? Page 57/91

 tures except the most recent self-signature on each user

 ID. This option is the same as running the --edit-key

 command "minimize" before export except that the local

 copy of the key is not modified. Defaults to no.

 export-dane

 Instead of outputting the key material output OpenPGP

 DANE records suitable to put into DNS zone files. An

 ORIGIN line is printed before each record to allow di?

 verting the records to the corresponding zone file.

 --with-colons

 Print key listings delimited by colons. Note that the output

 will be encoded in UTF-8 regardless of any --display-charset

 setting. This format is useful when GnuPG is called from scripts

 and other programs as it is easily machine parsed. The details

 of this format are documented in the file ?doc/DETAILS?, which

 is included in the GnuPG source distribution.

 --fixed-list-mode

 Do not merge primary user ID and primary key in --with-colon

 listing mode and print all timestamps as seconds since

 1970-01-01. Since GnuPG 2.0.10, this mode is always used and

 thus this option is obsolete; it does not harm to use it though.

 --legacy-list-mode

 Revert to the pre-2.1 public key list mode. This only affects

 the human readable output and not the machine interface (i.e.

 --with-colons). Note that the legacy format does not convey

 suitable information for elliptic curves.

 --with-fingerprint

 Same as the command --fingerprint but changes only the format of

 the output and may be used together with another command.

 --with-subkey-fingerprint

 If a fingerprint is printed for the primary key, this option

 forces printing of the fingerprint for all subkeys. This could

 also be achieved by using the --with-fingerprint twice but by Page 58/91

 using this option along with keyid-format "none" a compact fin?

 gerprint is printed.

 --with-icao-spelling

 Print the ICAO spelling of the fingerprint in addition to the

 hex digits.

 --with-keygrip

 Include the keygrip in the key listings. In --with-colons mode

 this is implicitly enable for secret keys.

 --with-key-origin

 Include the locally held information on the origin and last up?

 date of a key in a key listing. In --with-colons mode this is

 always printed. This data is currently experimental and shall

 not be considered part of the stable API.

 --with-wkd-hash

 Print a Web Key Directory identifier along with each user ID in

 key listings. This is an experimental feature and semantics may

 change.

 --with-secret

 Include info about the presence of a secret key in public key

 listings done with --with-colons.

 OpenPGP protocol specific options

 -t, --textmode

 --no-textmode

 Treat input files as text and store them in the OpenPGP canoni?

 cal text form with standard "CRLF" line endings. This also sets

 the necessary flags to inform the recipient that the encrypted

 or signed data is text and may need its line endings converted

 back to whatever the local system uses. This option is useful

 when communicating between two platforms that have different

 line ending conventions (UNIX-like to Mac, Mac to Windows, etc).

 --no-textmode disables this option, and is the default.

 --force-v3-sigs

 --no-force-v3-sigs Page 59/91

 --force-v4-certs

 --no-force-v4-certs

 These options are obsolete and have no effect since GnuPG 2.1.

 --force-aead

 Force the use of AEAD encryption over MDC encryption. AEAD is a

 modern and faster way to do authenticated encryption than the

 old MDC method. See also options --aead-algo and --chunk-size.

 --force-mdc

 --disable-mdc

 These options are obsolete and have no effect since GnuPG 2.2.8.

 The MDC is always used unless the keys indicate that an AEAD al?

 gorithm can be used in which case AEAD is used. But note: If

 the creation of a legacy non-MDC message is exceptionally re?

 quired, the option --rfc2440 allows for this.

 --disable-signer-uid

 By default the user ID of the signing key is embedded in the

 data signature. As of now this is only done if the signing key

 has been specified with local-user using a mail address, or with

 sender. This information can be helpful for verifier to locate

 the key; see option --auto-key-retrieve.

 --include-key-block

 --no-include-key-block

 This option is used to embed the actual signing key into a data

 signature. The embedded key is stripped down to a single user

 id and includes only the signing subkey used to create the sig?

 nature as well as as valid encryption subkeys. All other info

 is removed from the key to keep it and thus the signature small.

 This option is the OpenPGP counterpart to the gpgsm option --in?

 clude-certs and allows the recipient of a signed message to re?

 ply encrypted to the sender without using any online directories

 to lookup the key. The default is --no-include-key-block. See

 also the option --auto-key-import.

 --personal-cipher-preferences string Page 60/91

 Set the list of personal cipher preferences to string. Use gpg

 --version to get a list of available algorithms, and use none to

 set no preference at all. This allows the user to safely over?

 ride the algorithm chosen by the recipient key preferences, as

 GPG will only select an algorithm that is usable by all recipi?

 ents. The most highly ranked cipher in this list is also used

 for the --symmetric encryption command.

 --personal-aead-preferences string

 Set the list of personal AEAD preferences to string. Use gpg

 --version to get a list of available algorithms, and use none to

 set no preference at all. This allows the user to safely over?

 ride the algorithm chosen by the recipient key preferences, as

 GPG will only select an algorithm that is usable by all recipi?

 ents. The most highly ranked cipher in this list is also used

 for the --symmetric encryption command.

 --personal-digest-preferences string

 Set the list of personal digest preferences to string. Use gpg

 --version to get a list of available algorithms, and use none to

 set no preference at all. This allows the user to safely over?

 ride the algorithm chosen by the recipient key preferences, as

 GPG will only select an algorithm that is usable by all recipi?

 ents. The most highly ranked digest algorithm in this list is

 also used when signing without encryption (e.g. --clear-sign or

 --sign).

 --personal-compress-preferences string

 Set the list of personal compression preferences to string. Use

 gpg --version to get a list of available algorithms, and use

 none to set no preference at all. This allows the user to

 safely override the algorithm chosen by the recipient key pref?

 erences, as GPG will only select an algorithm that is usable by

 all recipients. The most highly ranked compression algorithm in

 this list is also used when there are no recipient keys to con?

 sider (e.g. --symmetric). Page 61/91

 --s2k-cipher-algo name

 Use name as the cipher algorithm for symmetric encryption with a

 passphrase if --personal-cipher-preferences and --cipher-algo

 are not given. The default is AES-128.

 --s2k-digest-algo name

 Use name as the digest algorithm used to mangle the passphrases

 for symmetric encryption. The default is SHA-1.

 --s2k-mode n

 Selects how passphrases for symmetric encryption are mangled. If

 n is 0 a plain passphrase (which is in general not recommended)

 will be used, a 1 adds a salt (which should not be used) to the

 passphrase and a 3 (the default) iterates the whole process a

 number of times (see --s2k-count).

 --s2k-count n

 Specify how many times the passphrases mangling for symmetric

 encryption is repeated. This value may range between 1024 and

 65011712 inclusive. The default is inquired from gpg-agent.

 Note that not all values in the 1024-65011712 range are legal

 and if an illegal value is selected, GnuPG will round up to the

 nearest legal value. This option is only meaningful if --s2k-

 mode is set to the default of 3.

 Compliance options

 These options control what GnuPG is compliant to. Only one of these op?

 tions may be active at a time. Note that the default setting of this is

 nearly always the correct one. See the INTEROPERABILITY WITH OTHER

 OPENPGP PROGRAMS section below before using one of these options.

 --gnupg

 Use standard GnuPG behavior. This is essentially OpenPGP behav?

 ior (see --openpgp), but with extension from the proposed update

 to OpenPGP and with some additional workarounds for common com?

 patibility problems in different versions of PGP. This is the

 default option, so it is not generally needed, but it may be

 useful to override a different compliance option in the gpg.conf Page 62/91

 file.

 --openpgp

 Reset all packet, cipher and digest options to strict OpenPGP

 behavior. This option implies --allow-old-cipher-algos. Use

 this option to reset all previous options like --s2k-*, --ci?

 pher-algo, --digest-algo and --compress-algo to OpenPGP compli?

 ant values. All PGP workarounds are disabled.

 --rfc4880

 Reset all packet, cipher and digest options to strict RFC-4880

 behavior. This option implies --allow-old-cipher-algos. Note

 that this is currently the same thing as --openpgp.

 --rfc4880bis

 Reset all packet, cipher and digest options to strict according

 to the proposed updates of RFC-4880.

 --rfc2440

 Reset all packet, cipher and digest options to strict RFC-2440

 behavior. Note that by using this option encryption packets are

 created in a legacy mode without MDC protection. This is dan?

 gerous and should thus only be used for experiments. This op?

 tion implies --allow-old-cipher-algos. See also option --ig?

 nore-mdc-error.

 --pgp6 This option is obsolete; it is handled as an alias for --pgp7

 --pgp7 Set up all options to be as PGP 7 compliant as possible. This

 allowed the ciphers IDEA, 3DES, CAST5,AES128, AES192, AES256,

 and TWOFISH., the hashes MD5, SHA1 and RIPEMD160, and the com?

 pression algorithms none and ZIP. This option implies --escape-

 from-lines and disables --throw-keyids,

 --pgp8 Set up all options to be as PGP 8 compliant as possible. PGP 8

 is a lot closer to the OpenPGP standard than previous versions

 of PGP, so all this does is disable --throw-keyids and set --es?

 cape-from-lines. All algorithms are allowed except for the

 SHA224, SHA384, and SHA512 digests.

 --compliance string Page 63/91

 This option can be used instead of one of the options above.

 Valid values for string are the above option names (without the

 double dash) and possibly others as shown when using "help" for

 value.

 Doing things one usually doesn't want to do

 -n

 --dry-run

 Don't make any changes (this is not completely implemented).

 --list-only

 Changes the behaviour of some commands. This is like --dry-run

 but different in some cases. The semantic of this option may be

 extended in the future. Currently it only skips the actual de?

 cryption pass and therefore enables a fast listing of the en?

 cryption keys.

 -i

 --interactive

 Prompt before overwriting any files.

 --debug-level level

 Select the debug level for investigating problems. level may be

 a numeric value or by a keyword:

 none No debugging at all. A value of less than 1 may be used

 instead of the keyword.

 basic Some basic debug messages. A value between 1 and 2 may

 be used instead of the keyword.

 advanced

 More verbose debug messages. A value between 3 and 5 may

 be used instead of the keyword.

 expert Even more detailed messages. A value between 6 and 8 may

 be used instead of the keyword.

 guru All of the debug messages you can get. A value greater

 than 8 may be used instead of the keyword. The creation

 of hash tracing files is only enabled if the keyword is

 used. Page 64/91

 How these messages are mapped to the actual debugging flags is not

 specified and may change with newer releases of this program. They are

 however carefully selected to best aid in debugging.

 --debug flags

 Set debug flags. All flags are or-ed and flags may be given in

 C syntax (e.g. 0x0042) or as a comma separated list of flag

 names. To get a list of all supported flags the single word

 "help" can be used. This option is only useful for debugging and

 the behavior may change at any time without notice.

 --debug-all

 Set all useful debugging flags.

 --debug-iolbf

 Set stdout into line buffered mode. This option is only honored

 when given on the command line.

 --debug-set-iobuf-size n

 Change the buffer size of the IOBUFs to n kilobyte. Using 0

 prints the current size. Note well: This is a maintainer only

 option and may thus be changed or removed at any time without

 notice.

 --debug-allow-large-chunks

 To facilitate software tests and experiments this option allows

 to specify a limit of up to 4 EiB (--chunk-size 62).

 --faked-system-time epoch

 This option is only useful for testing; it sets the system time

 back or forth to epoch which is the number of seconds elapsed

 since the year 1970. Alternatively epoch may be given as a full

 ISO time string (e.g. "20070924T154812").

 If you suffix epoch with an exclamation mark (!), the system

 time will appear to be frozen at the specified time.

 --full-timestrings

 Change the format of printed creation and expiration times from

 just the date to the date and time. This is in general not use?

 ful and the same information is anyway available in --with- Page 65/91

 colons mode. These longer strings are also not well aligned

 with other printed data.

 --enable-progress-filter

 Enable certain PROGRESS status outputs. This option allows

 frontends to display a progress indicator while gpg is process?

 ing larger files. There is a slight performance overhead using

 it.

 --status-fd n

 Write special status strings to the file descriptor n. See the

 file DETAILS in the documentation for a listing of them.

 --status-file file

 Same as --status-fd, except the status data is written to file

 file.

 --logger-fd n

 Write log output to file descriptor n and not to STDERR.

 --log-file file

 --logger-file file

 Same as --logger-fd, except the logger data is written to file

 file. Use ?socket://? to log to s socket.

 --attribute-fd n

 Write attribute subpackets to the file descriptor n. This is

 most useful for use with --status-fd, since the status messages

 are needed to separate out the various subpackets from the

 stream delivered to the file descriptor.

 --attribute-file file

 Same as --attribute-fd, except the attribute data is written to

 file file.

 --comment string

 --no-comments

 Use string as a comment string in cleartext signatures and ASCII

 armored messages or keys (see --armor). The default behavior is

 not to use a comment string. --comment may be repeated multiple

 times to get multiple comment strings. --no-comments removes all Page 66/91

 comments. It is a good idea to keep the length of a single com?

 ment below 60 characters to avoid problems with mail programs

 wrapping such lines. Note that comment lines, like all other

 header lines, are not protected by the signature.

 --emit-version

 --no-emit-version

 Force inclusion of the version string in ASCII armored output.

 If given once only the name of the program and the major number

 is emitted, given twice the minor is also emitted, given thrice

 the micro is added, and given four times an operating system

 identification is also emitted. --no-emit-version (default)

 disables the version line.

 --sig-notation {name=value}

 --cert-notation {name=value}

 -N, --set-notation {name=value}

 Put the name value pair into the signature as notation data.

 name must consist only of printable characters or spaces, and

 must contain a '@' character in the form keyname@domain.exam?

 ple.com (substituting the appropriate keyname and domain name,

 of course). This is to help prevent pollution of the IETF re?

 served notation namespace. The --expert flag overrides the '@'

 check. value may be any printable string; it will be encoded in

 UTF-8, so you should check that your --display-charset is set

 correctly. If you prefix name with an exclamation mark (!), the

 notation data will be flagged as critical (rfc4880:5.2.3.16).

 --sig-notation sets a notation for data signatures. --cert-nota?

 tion sets a notation for key signatures (certifications). --set-

 notation sets both.

 There are special codes that may be used in notation names. "%k"

 will be expanded into the key ID of the key being signed, "%K"

 into the long key ID of the key being signed, "%f" into the fin?

 gerprint of the key being signed, "%s" into the key ID of the

 key making the signature, "%S" into the long key ID of the key Page 67/91

 making the signature, "%g" into the fingerprint of the key mak?

 ing the signature (which might be a subkey), "%p" into the fin?

 gerprint of the primary key of the key making the signature,

 "%c" into the signature count from the OpenPGP smartcard, and

 "%%" results in a single "%". %k, %K, and %f are only meaningful

 when making a key signature (certification), and %c is only

 meaningful when using the OpenPGP smartcard.

 --known-notation name

 Adds name to a list of known critical signature notations. The

 effect of this is that gpg will not mark a signature with a

 critical signature notation of that name as bad. Note that gpg

 already knows by default about a few critical signatures nota?

 tion names.

 --sig-policy-url string

 --cert-policy-url string

 --set-policy-url string

 Use string as a Policy URL for signatures (rfc4880:5.2.3.20).

 If you prefix it with an exclamation mark (!), the policy URL

 packet will be flagged as critical. --sig-policy-url sets a pol?

 icy url for data signatures. --cert-policy-url sets a policy url

 for key signatures (certifications). --set-policy-url sets both.

 The same %-expandos used for notation data are available here as

 well.

 --sig-keyserver-url string

 Use string as a preferred keyserver URL for data signatures. If

 you prefix it with an exclamation mark (!), the keyserver URL

 packet will be flagged as critical.

 The same %-expandos used for notation data are available here as

 well.

 --set-filename string

 Use string as the filename which is stored inside messages.

 This overrides the default, which is to use the actual filename

 of the file being encrypted. Using the empty string for string Page 68/91

 effectively removes the filename from the output.

 --for-your-eyes-only

 --no-for-your-eyes-only

 Set the `for your eyes only' flag in the message. This causes

 GnuPG to refuse to save the file unless the --output option is

 given, and PGP to use a "secure viewer" with a claimed Tempest-

 resistant font to display the message. This option overrides

 --set-filename. --no-for-your-eyes-only disables this option.

 --use-embedded-filename

 --no-use-embedded-filename

 Try to create a file with a name as embedded in the data. This

 can be a dangerous option as it enables overwriting files. De?

 faults to no. Note that the option --output overrides this op?

 tion.

 --cipher-algo name

 Use name as cipher algorithm. Running the program with the com?

 mand --version yields a list of supported algorithms. If this is

 not used the cipher algorithm is selected from the preferences

 stored with the key. In general, you do not want to use this op?

 tion as it allows you to violate the OpenPGP standard. The op?

 tion --personal-cipher-preferences is the safe way to accomplish

 the same thing.

 --aead-algo name

 Specify that the AEAD algorithm name is to be used. This is

 useful for symmetric encryption where no key preference are

 available to select the AEAD algorithm. Running gpg with option

 --version shows the available AEAD algorithms. In general, you

 do not want to use this option as it allows you to violate the

 OpenPGP standard. The option --personal-aead-preferences is the

 safe way to accomplish the same thing.

 --digest-algo name

 Use name as the message digest algorithm. Running the program

 with the command --version yields a list of supported algo? Page 69/91

 rithms. In general, you do not want to use this option as it al?

 lows you to violate the OpenPGP standard. The option --per?

 sonal-digest-preferences is the safe way to accomplish the same

 thing.

 --compress-algo name

 Use compression algorithm name. "zlib" is RFC-1950 ZLIB compres?

 sion. "zip" is RFC-1951 ZIP compression which is used by PGP.

 "bzip2" is a more modern compression scheme that can compress

 some things better than zip or zlib, but at the cost of more

 memory used during compression and decompression. "uncompressed"

 or "none" disables compression. If this option is not used, the

 default behavior is to examine the recipient key preferences to

 see which algorithms the recipient supports. If all else fails,

 ZIP is used for maximum compatibility.

 ZLIB may give better compression results than ZIP, as the com?

 pression window size is not limited to 8k. BZIP2 may give even

 better compression results than that, but will use a signifi?

 cantly larger amount of memory while compressing and decompress?

 ing. This may be significant in low memory situations. Note,

 however, that PGP (all versions) only supports ZIP compression.

 Using any algorithm other than ZIP or "none" will make the mes?

 sage unreadable with PGP. In general, you do not want to use

 this option as it allows you to violate the OpenPGP standard.

 The option --personal-compress-preferences is the safe way to

 accomplish the same thing.

 --cert-digest-algo name

 Use name as the message digest algorithm used when signing a

 key. Running the program with the command --version yields a

 list of supported algorithms. Be aware that if you choose an

 algorithm that GnuPG supports but other OpenPGP implementations

 do not, then some users will not be able to use the key signa?

 tures you make, or quite possibly your entire key. Note also

 that a public key algorithm must be compatible with the speci? Page 70/91

 fied digest algorithm; thus selecting an arbitrary digest algo?

 rithm may result in error messages from lower crypto layers or

 lead to security flaws.

 --disable-cipher-algo name

 Never allow the use of name as cipher algorithm. The given name

 will not be checked so that a later loaded algorithm will still

 get disabled.

 --disable-pubkey-algo name

 Never allow the use of name as public key algorithm. The given

 name will not be checked so that a later loaded algorithm will

 still get disabled.

 --throw-keyids

 --no-throw-keyids

 Do not put the recipient key IDs into encrypted messages. This

 helps to hide the receivers of the message and is a limited

 countermeasure against traffic analysis. ([Using a little social

 engineering anyone who is able to decrypt the message can check

 whether one of the other recipients is the one he suspects.])

 On the receiving side, it may slow down the decryption process

 because all available secret keys must be tried. --no-throw-

 keyids disables this option. This option is essentially the same

 as using --hidden-recipient for all recipients.

 --not-dash-escaped

 This option changes the behavior of cleartext signatures so that

 they can be used for patch files. You should not send such an

 armored file via email because all spaces and line endings are

 hashed too. You can not use this option for data which has 5

 dashes at the beginning of a line, patch files don't have this.

 A special armor header line tells GnuPG about this cleartext

 signature option.

 --escape-from-lines

 --no-escape-from-lines

 Because some mailers change lines starting with "From " to Page 71/91

 ">From " it is good to handle such lines in a special way when

 creating cleartext signatures to prevent the mail system from

 breaking the signature. Note that all other PGP versions do it

 this way too. Enabled by default. --no-escape-from-lines dis?

 ables this option.

 --passphrase-repeat n

 Specify how many times gpg will request a new passphrase be re?

 peated. This is useful for helping memorize a passphrase. De?

 faults to 1 repetition; can be set to 0 to disable any

 passphrase repetition. Note that a n greater than 1 will pop up

 the pinentry window n+1 times even if a modern pinentry with two

 entry fields is used.

 --passphrase-fd n

 Read the passphrase from file descriptor n. Only the first line

 will be read from file descriptor n. If you use 0 for n, the

 passphrase will be read from STDIN. This can only be used if

 only one passphrase is supplied.

 Note that since Version 2.0 this passphrase is only used if the

 option --batch has also been given. Since Version 2.1 the

 --pinentry-mode also needs to be set to loopback.

 --passphrase-file file

 Read the passphrase from file file. Only the first line will be

 read from file file. This can only be used if only one

 passphrase is supplied. Obviously, a passphrase stored in a file

 is of questionable security if other users can read this file.

 Don't use this option if you can avoid it.

 Note that since Version 2.0 this passphrase is only used if the

 option --batch has also been given. Since Version 2.1 the

 --pinentry-mode also needs to be set to loopback.

 --passphrase string

 Use string as the passphrase. This can only be used if only one

 passphrase is supplied. Obviously, this is of very questionable

 security on a multi-user system. Don't use this option if you Page 72/91

 can avoid it.

 Note that since Version 2.0 this passphrase is only used if the

 option --batch has also been given. Since Version 2.1 the

 --pinentry-mode also needs to be set to loopback.

 --pinentry-mode mode

 Set the pinentry mode to mode. Allowed values for mode are:

 default

 Use the default of the agent, which is ask.

 ask Force the use of the Pinentry.

 cancel Emulate use of Pinentry's cancel button.

 error Return a Pinentry error (``No Pinentry'').

 loopback

 Redirect Pinentry queries to the caller. Note that in

 contrast to Pinentry the user is not prompted again if he

 enters a bad password.

 --no-symkey-cache

 Disable the passphrase cache used for symmetrical en- and de?

 cryption. This cache is based on the message specific salt

 value (cf. --s2k-mode).

 --request-origin origin

 Tell gpg to assume that the operation ultimately originated at

 origin. Depending on the origin certain restrictions are ap?

 plied and the Pinentry may include an extra note on the origin.

 Supported values for origin are: local which is the default, re?

 mote to indicate a remote origin or browser for an operation re?

 quested by a web browser.

 --command-fd n

 This is a replacement for the deprecated shared-memory IPC mode.

 If this option is enabled, user input on questions is not ex?

 pected from the TTY but from the given file descriptor. It

 should be used together with --status-fd. See the file doc/DE?

 TAILS in the source distribution for details on how to use it.

 --command-file file Page 73/91

 Same as --command-fd, except the commands are read out of file

 file

 --allow-non-selfsigned-uid

 --no-allow-non-selfsigned-uid

 Allow the import and use of keys with user IDs which are not

 self-signed. This is not recommended, as a non self-signed user

 ID is trivial to forge. --no-allow-non-selfsigned-uid disables.

 --allow-freeform-uid

 Disable all checks on the form of the user ID while generating a

 new one. This option should only be used in very special envi?

 ronments as it does not ensure the de-facto standard format of

 user IDs.

 --ignore-time-conflict

 GnuPG normally checks that the timestamps associated with keys

 and signatures have plausible values. However, sometimes a sig?

 nature seems to be older than the key due to clock problems.

 This option makes these checks just a warning. See also --ig?

 nore-valid-from for timestamp issues on subkeys.

 --ignore-valid-from

 GnuPG normally does not select and use subkeys created in the

 future. This option allows the use of such keys and thus ex?

 hibits the pre-1.0.7 behaviour. You should not use this option

 unless there is some clock problem. See also --ignore-time-con?

 flict for timestamp issues with signatures.

 --ignore-crc-error

 The ASCII armor used by OpenPGP is protected by a CRC checksum

 against transmission errors. Occasionally the CRC gets mangled

 somewhere on the transmission channel but the actual content

 (which is protected by the OpenPGP protocol anyway) is still

 okay. This option allows GnuPG to ignore CRC errors.

 --ignore-mdc-error

 This option changes a MDC integrity protection failure into a

 warning. It is required to decrypt old messages which did not Page 74/91

 use an MDC. It may also be useful if a message is partially

 garbled, but it is necessary to get as much data as possible out

 of that garbled message. Be aware that a missing or failed MDC

 can be an indication of an attack. Use with great caution; see

 also option --rfc2440.

 --allow-old-cipher-algos

 Old cipher algorithms like 3DES, IDEA, or CAST5 encrypt data us?

 ing blocks of 64 bits; modern algorithms use blocks of 128 bit

 instead. To avoid certain attack on these old algorithms it is

 suggested not to encrypt more than 150 MiByte using the same

 key. For this reason gpg does not allow the use of 64 bit block

 size algorithms for encryption unless this option is specified.

 --allow-weak-digest-algos

 Signatures made with known-weak digest algorithms are normally

 rejected with an ``invalid digest algorithm'' message. This op?

 tion allows the verification of signatures made with such weak

 algorithms. MD5 is the only digest algorithm considered weak by

 default. See also --weak-digest to reject other digest algo?

 rithms.

 --weak-digest name

 Treat the specified digest algorithm as weak. Signatures made

 over weak digests algorithms are normally rejected. This option

 can be supplied multiple times if multiple algorithms should be

 considered weak. See also --allow-weak-digest-algos to disable

 rejection of weak digests. MD5 is always considered weak, and

 does not need to be listed explicitly.

 --allow-weak-key-signatures

 To avoid a minor risk of collision attacks on third-party key

 signatures made using SHA-1, those key signatures are considered

 invalid. This options allows to override this restriction.

 --no-default-keyring

 Do not add the default keyring to the list of keyrings. Note

 that GnuPG needs for almost all operations a keyring. Thus if Page 75/91

 you use this option and do not provide alternate keyrings via

 --keyring, then GnuPG will still use the default keyring.

 Note that if the option use-keyboxd is enabled in ?common.conf?,

 no keyrings are used at all and keys are all maintained by the

 keyboxd process in its own database.

 --no-keyring

 Do not use any keyring at all. This overrides the default and

 all options which specify keyrings.

 --skip-verify

 Skip the signature verification step. This may be used to make

 the decryption faster if the signature verification is not

 needed.

 --with-key-data

 Print key listings delimited by colons (like --with-colons) and

 print the public key data.

 --list-signatures

 --list-sigs

 Same as --list-keys, but the signatures are listed too. This

 command has the same effect as using --list-keys with --with-

 sig-list. Note that in contrast to --check-signatures the key

 signatures are not verified. This command can be used to create

 a list of signing keys missing in the local keyring; for exam?

 ple:

 gpg --list-sigs --with-colons USERID | \

 awk -F: '$1=="sig" && $2=="?" {if($13){print $13}else{print $5}}'

 --fast-list-mode

 Changes the output of the list commands to work faster; this is

 achieved by leaving some parts empty. Some applications don't

 need the user ID and the trust information given in the list?

 ings. By using this options they can get a faster listing. The

 exact behaviour of this option may change in future versions.

 If you are missing some information, don't use this option.

 --no-literal Page 76/91

 This is not for normal use. Use the source to see for what it

 might be useful.

 --set-filesize

 This is not for normal use. Use the source to see for what it

 might be useful.

 --show-session-key

 Display the session key used for one message. See --override-

 session-key for the counterpart of this option.

 We think that Key Escrow is a Bad Thing; however the user should

 have the freedom to decide whether to go to prison or to reveal

 the content of one specific message without compromising all

 messages ever encrypted for one secret key.

 You can also use this option if you receive an encrypted message

 which is abusive or offensive, to prove to the administrators of

 the messaging system that the ciphertext transmitted corresponds

 to an inappropriate plaintext so they can take action against

 the offending user.

 --override-session-key string

 --override-session-key-fd fd

 Don't use the public key but the session key string respective

 the session key taken from the first line read from file de?

 scriptor fd. The format of this string is the same as the one

 printed by --show-session-key. This option is normally not used

 but comes handy in case someone forces you to reveal the content

 of an encrypted message; using this option you can do this with?

 out handing out the secret key. Note that using --override-ses?

 sion-key may reveal the session key to all local users via the

 global process table. Often it is useful to combine this option

 with --no-keyring.

 --ask-sig-expire

 --no-ask-sig-expire

 When making a data signature, prompt for an expiration time. If

 this option is not specified, the expiration time set via --de? Page 77/91

 fault-sig-expire is used. --no-ask-sig-expire disables this op?

 tion.

 --default-sig-expire

 The default expiration time to use for signature expiration.

 Valid values are "0" for no expiration, a number followed by the

 letter d (for days), w (for weeks), m (for months), or y (for

 years) (for example "2m" for two months, or "5y" for five

 years), or an absolute date in the form YYYY-MM-DD. Defaults to

 "0".

 --ask-cert-expire

 --no-ask-cert-expire

 When making a key signature, prompt for an expiration time. If

 this option is not specified, the expiration time set via --de?

 fault-cert-expire is used. --no-ask-cert-expire disables this

 option.

 --default-cert-expire

 The default expiration time to use for key signature expiration.

 Valid values are "0" for no expiration, a number followed by the

 letter d (for days), w (for weeks), m (for months), or y (for

 years) (for example "2m" for two months, or "5y" for five

 years), or an absolute date in the form YYYY-MM-DD. Defaults to

 "0".

 --default-new-key-algo string

 This option can be used to change the default algorithms for key

 generation. The string is similar to the arguments required for

 the command --quick-add-key but slightly different. For example

 the current default of "rsa2048/cert,sign+rsa2048/encr" (or

 "rsa3072") can be changed to the value of what we currently call

 future default, which is "ed25519/cert,sign+cv25519/encr". You

 need to consult the source code to learn the details. Note that

 the advanced key generation commands can always be used to spec?

 ify a key algorithm directly.

 --no-auto-trust-new-key Page 78/91

 When creating a new key the ownertrust of the new key is set to

 ultimate. This option disables this and the user needs to manu?

 ally assign an ownertrust value.

 --force-sign-key

 This option modifies the behaviour of the commands --quick-sign-

 key, --quick-lsign-key, and the "sign" sub-commands of --edit-

 key by forcing the creation of a key signature, even if one al?

 ready exists.

 --allow-secret-key-import

 This is an obsolete option and is not used anywhere.

 --allow-multiple-messages

 --no-allow-multiple-messages

 These are obsolete options; they have no more effect since GnuPG

 2.2.8.

 --enable-special-filenames

 This option enables a mode in which filenames of the form ?-&n?,

 where n is a non-negative decimal number, refer to the file de?

 scriptor n and not to a file with that name.

 --no-expensive-trust-checks

 Experimental use only.

 --preserve-permissions

 Don't change the permissions of a secret keyring back to user

 read/write only. Use this option only if you really know what

 you are doing.

 --default-preference-list string

 Set the list of default preferences to string. This preference

 list is used for new keys and becomes the default for "setpref"

 in the --edit-key menu.

 --default-keyserver-url name

 Set the default keyserver URL to name. This keyserver will be

 used as the keyserver URL when writing a new self-signature on a

 key, which includes key generation and changing preferences.

 --list-config Page 79/91

 Display various internal configuration parameters of GnuPG. This

 option is intended for external programs that call GnuPG to per?

 form tasks, and is thus not generally useful. See the file

 ?doc/DETAILS? in the source distribution for the details of

 which configuration items may be listed. --list-config is only

 usable with --with-colons set.

 --list-gcrypt-config

 Display various internal configuration parameters of Libgcrypt.

 --gpgconf-list

 This command is similar to --list-config but in general only in?

 ternally used by the gpgconf tool.

 --gpgconf-test

 This is more or less dummy action. However it parses the con?

 figuration file and returns with failure if the configuration

 file would prevent gpg from startup. Thus it may be used to run

 a syntax check on the configuration file.

 --chuid uid

 Change the current user to uid which may either be a number or a

 name. This can be used from the root account to run gpg for an?

 other user. If uid is not the current UID a standard PATH is

 set and the envvar GNUPGHOME is unset. To override the latter

 the option --homedir can be used. This option has only an ef?

 fect when used on the command line. This option has currently

 no effect at all on Windows.

 Deprecated options

 --show-photos

 --no-show-photos

 Causes --list-keys, --list-signatures, --list-public-keys,

 --list-secret-keys, and verifying a signature to also display

 the photo ID attached to the key, if any. See also --photo-

 viewer. These options are deprecated. Use --list-options

 [no-]show-photos and/or --verify-options [no-]show-photos in?

 stead. Page 80/91

 --show-keyring

 Display the keyring name at the head of key listings to show

 which keyring a given key resides on. This option is deprecated:

 use --list-options [no-]show-keyring instead.

 --always-trust

 Identical to --trust-model always. This option is deprecated.

 --show-notation

 --no-show-notation

 Show signature notations in the --list-signatures or --check-

 signatures listings as well as when verifying a signature with a

 notation in it. These options are deprecated. Use --list-options

 [no-]show-notation and/or --verify-options [no-]show-notation

 instead.

 --show-policy-url

 --no-show-policy-url

 Show policy URLs in the --list-signatures or --check-signatures

 listings as well as when verifying a signature with a policy URL

 in it. These options are deprecated. Use --list-options

 [no-]show-policy-url and/or --verify-options [no-]show-policy-

 url instead.

EXAMPLES

 gpg -se -r Bob file

 sign and encrypt for user Bob

 gpg --clear-sign file

 make a cleartext signature

 gpg -sb file

 make a detached signature

 gpg -u 0x12345678 -sb file

 make a detached signature with the key 0x12345678

 gpg --list-keys user_ID

 show keys

 gpg --fingerprint user_ID

 show fingerprint Page 81/91

 gpg --verify pgpfile

 gpg --verify sigfile [datafile]

 Verify the signature of the file but do not output the data un?

 less requested. The second form is used for detached signa?

 tures, where sigfile is the detached signature (either ASCII ar?

 mored or binary) and datafile are the signed data; if this is

 not given, the name of the file holding the signed data is con?

 structed by cutting off the extension (".asc" or ".sig") of sig?

 file or by asking the user for the filename. If the option

 --output is also used the signed data is written to the file

 specified by that option; use - to write the signed data to std?

 out.

HOW TO SPECIFY A USER ID

 There are different ways to specify a user ID to GnuPG. Some of them

 are only valid for gpg others are only good for gpgsm. Here is the en?

 tire list of ways to specify a key:

 By key Id.

 This format is deduced from the length of the string and its

 content or 0x prefix. The key Id of an X.509 certificate are the

 low 64 bits of its SHA-1 fingerprint. The use of key Ids is

 just a shortcut, for all automated processing the fingerprint

 should be used.

 When using gpg an exclamation mark (!) may be appended to force

 using the specified primary or secondary key and not to try and

 calculate which primary or secondary key to use.

 The last four lines of the example give the key ID in their long

 form as internally used by the OpenPGP protocol. You can see the

 long key ID using the option --with-colons.

 234567C4

 0F34E556E

 01347A56A

 0xAB123456

 234AABBCC34567C4 Page 82/91

 0F323456784E56EAB

 01AB3FED1347A5612

 0x234AABBCC34567C4

 By fingerprint.

 This format is deduced from the length of the string and its

 content or the 0x prefix. Note, that only the 20 byte version

 fingerprint is available with gpgsm (i.e. the SHA-1 hash of the

 certificate).

 When using gpg an exclamation mark (!) may be appended to force

 using the specified primary or secondary key and not to try and

 calculate which primary or secondary key to use.

 The best way to specify a key Id is by using the fingerprint.

 This avoids any ambiguities in case that there are duplicated

 key IDs.

 1234343434343434C434343434343434

 123434343434343C3434343434343734349A3434

 0E12343434343434343434EAB3484343434343434

 0xE12343434343434343434EAB3484343434343434

 gpgsm also accepts colons between each pair of hexadecimal digits be?

 cause this is the de-facto standard on how to present X.509 finger?

 prints. gpg also allows the use of the space separated SHA-1 finger?

 print as printed by the key listing commands.

 By exact match on OpenPGP user ID.

 This is denoted by a leading equal sign. It does not make sense

 for X.509 certificates.

 =Heinrich Heine <heinrichh@uni-duesseldorf.de>

 By exact match on an email address.

 This is indicated by enclosing the email address in the usual

 way with left and right angles.

 <heinrichh@uni-duesseldorf.de>

 By partial match on an email address.

 This is indicated by prefixing the search string with an @.

 This uses a substring search but considers only the mail address Page 83/91

 (i.e. inside the angle brackets).

 @heinrichh

 By exact match on the subject's DN.

 This is indicated by a leading slash, directly followed by the

 RFC-2253 encoded DN of the subject. Note that you can't use the

 string printed by gpgsm --list-keys because that one has been

 reordered and modified for better readability; use --with-colons

 to print the raw (but standard escaped) RFC-2253 string.

 /CN=Heinrich Heine,O=Poets,L=Paris,C=FR

 By exact match on the issuer's DN.

 This is indicated by a leading hash mark, directly followed by a

 slash and then directly followed by the RFC-2253 encoded DN of

 the issuer. This should return the Root cert of the issuer.

 See note above.

 #/CN=Root Cert,O=Poets,L=Paris,C=FR

 By exact match on serial number and issuer's DN.

 This is indicated by a hash mark, followed by the hexadecimal

 representation of the serial number, then followed by a slash

 and the RFC-2253 encoded DN of the issuer. See note above.

 #4F03/CN=Root Cert,O=Poets,L=Paris,C=FR

 By keygrip.

 This is indicated by an ampersand followed by the 40 hex digits

 of a keygrip. gpgsm prints the keygrip when using the command

 --dump-cert.

 &D75F22C3F86E355877348498CDC92BD21010A480

 By substring match.

 This is the default mode but applications may want to explicitly

 indicate this by putting the asterisk in front. Match is not

 case sensitive.

 Heine

 *Heine

 . and + prefixes

 These prefixes are reserved for looking up mails anchored at the Page 84/91

 end and for a word search mode. They are not yet implemented

 and using them is undefined.

 Please note that we have reused the hash mark identifier which

 was used in old GnuPG versions to indicate the so called local-

 id. It is not anymore used and there should be no conflict when

 used with X.509 stuff.

 Using the RFC-2253 format of DNs has the drawback that it is not

 possible to map them back to the original encoding, however we

 don't have to do this because our key database stores this en?

 coding as meta data.

FILTER EXPRESSIONS

 The options --import-filter and --export-filter use expressions with

 this syntax (square brackets indicate an optional part and curly braces

 a repetition, white space between the elements are allowed):

 [lc] {[{flag}] PROPNAME op VALUE [lc]}

 The name of a property (PROPNAME) may only consist of letters, digits

 and underscores. The description for the filter type describes which

 properties are defined. If an undefined property is used it evaluates

 to the empty string. Unless otherwise noted, the VALUE must always be

 given and may not be the empty string. No quoting is defined for the

 value, thus the value may not contain the strings && or ||, which are

 used as logical connection operators. The flag -- can be used to re?

 move this restriction.

 Numerical values are computed as long int; standard C notation applies.

 lc is the logical connection operator; either && for a conjunction or

 || for a disjunction. A conjunction is assumed at the begin of an ex?

 pression. Conjunctions have higher precedence than disjunctions. If

 VALUE starts with one of the characters used in any op a space after

 the op is required.

 The supported operators (op) are:

 =~ Substring must match.

 !~ Substring must not match.

 = The full string must match. Page 85/91

 <> The full string must not match.

 == The numerical value must match.

 != The numerical value must not match.

 <= The numerical value of the field must be LE than the value.

 < The numerical value of the field must be LT than the value.

 > The numerical value of the field must be GT than the value.

 >= The numerical value of the field must be GE than the value.

 -le The string value of the field must be less or equal than the

 value.

 -lt The string value of the field must be less than the value.

 -gt The string value of the field must be greater than the value.

 -ge The string value of the field must be greater or equal than the

 value.

 -n True if value is not empty (no value allowed).

 -z True if value is empty (no value allowed).

 -t Alias for "PROPNAME != 0" (no value allowed).

 -f Alias for "PROPNAME == 0" (no value allowed).

 Values for flag must be space separated. The supported flags are:

 -- VALUE spans to the end of the expression.

 -c The string match in this part is done case-sensitive.

 -t Leading and trailing spaces are not removed from VALUE. The op?

 tional single space after op is here required.

 The filter options concatenate several specifications for a filter of

 the same type. For example the four options in this example:

 --import-filter keep-uid="uid =~ Alfa"

 --import-filter keep-uid="&& uid !~ Test"

 --import-filter keep-uid="|| uid =~ Alpha"

 --import-filter keep-uid="uid !~ Test"

 which is equivalent to

 --import-filter \

 keep-uid="uid =~ Alfa" && uid !~ Test" || uid =~ Alpha" && "uid !~ Test"

 imports only the user ids of a key containing the strings "Alfa" or

 "Alpha" but not the string "test". Page 86/91

TRUST VALUES

 Trust values are used to indicate ownertrust and validity of keys and

 user IDs. They are displayed with letters or strings:

 -

 unknown

 No ownertrust assigned / not yet calculated.

 e

 expired

 Trust calculation has failed; probably due to an expired key.

 q

 undefined, undef

 Not enough information for calculation.

 n

 never Never trust this key.

 m

 marginal

 Marginally trusted.

 f

 full Fully trusted.

 u

 ultimate

 Ultimately trusted.

 r

 revoked

 For validity only: the key or the user ID has been revoked.

 ?

 err The program encountered an unknown trust value.

FILES

 There are a few configuration files to control certain aspects of gpg's

 operation. Unless noted, they are expected in the current home direc?

 tory (see: [option --homedir]).

 gpg.conf

 This is the standard configuration file read by gpg on startup. Page 87/91

 It may contain any valid long option; the leading two dashes may

 not be entered and the option may not be abbreviated. This de?

 fault name may be changed on the command line (see: [gpg-option

 --options]). You should backup this file.

 common.conf

 This is an optional configuration file read by gpg on startup.

 It may contain options pertaining to all components of GnuPG.

 Its current main use is for the "use-keyboxd" option.

 Note that on larger installations, it is useful to put predefined files

 into the directory ?/etc/skel/.gnupg? so that newly created users start

 up with a working configuration. For existing users a small helper

 script is provided to create these files (see: [addgnupghome]).

 For internal purposes gpg creates and maintains a few other files; They

 all live in the current home directory (see: [option --homedir]). Only

 the gpg program may modify these files.

 ~/.gnupg

 This is the default home directory which is used if neither the

 environment variable GNUPGHOME nor the option --homedir is

 given.

 ~/.gnupg/pubring.gpg

 The public keyring using a legacy format. You should backup

 this file.

 If this file is not available, gpg defaults to the new keybox

 format and creates a file ?pubring.kbx? unless that file already

 exists in which case that file will also be used for OpenPGP

 keys.

 Note that in the case that both files, ?pubring.gpg? and ?pub?

 ring.kbx? exists but the latter has no OpenPGP keys, the legacy

 file ?pubring.gpg? will be used. Take care: GnuPG versions be?

 fore 2.1 will always use the file ?pubring.gpg? because they do

 not know about the new keybox format. In the case that you have

 to use GnuPG 1.4 to decrypt archived data you should keep this

 file. Page 88/91

 ~/.gnupg/pubring.gpg.lock

 The lock file for the public keyring.

 ~/.gnupg/pubring.kbx

 The public keyring using the new keybox format. This file is

 shared with gpgsm. You should backup this file. See above for

 the relation between this file and it predecessor.

 To convert an existing ?pubring.gpg? file to the keybox format,

 you first backup the ownertrust values, then rename ?pub?

 ring.gpg? to ?publickeys.backup?, so it won?t be recognized by

 any GnuPG version, run import, and finally restore the own?

 ertrust values:

 $ cd ~/.gnupg

 $ gpg --export-ownertrust >otrust.lst

 $ mv pubring.gpg publickeys.backup

 $ gpg --import-options restore --import publickeys.backups

 $ gpg --import-ownertrust otrust.lst

 ~/.gnupg/pubring.kbx.lock

 The lock file for ?pubring.kbx?.

 ~/.gnupg/secring.gpg

 The legacy secret keyring as used by GnuPG versions before 2.1.

 It is not used by GnuPG 2.1 and later. You may want to keep it

 in case you have to use GnuPG 1.4 to decrypt archived data.

 ~/.gnupg/secring.gpg.lock

 The lock file for the legacy secret keyring.

 ~/.gnupg/.gpg-v21-migrated

 File indicating that a migration to GnuPG 2.1 has been done.

 ~/.gnupg/trustdb.gpg

 The trust database. There is no need to backup this file; it is

 better to backup the ownertrust values (see: [option --export-

 ownertrust]).

 ~/.gnupg/trustdb.gpg.lock

 The lock file for the trust database.

 ~/.gnupg/random_seed Page 89/91

 A file used to preserve the state of the internal random pool.

 ~/.gnupg/openpgp-revocs.d/

 This is the directory where gpg stores pre-generated revocation

 certificates. The file name corresponds to the OpenPGP finger?

 print of the respective key. It is suggested to backup those

 certificates and if the primary private key is not stored on the

 disk to move them to an external storage device. Anyone who can

 access these files is able to revoke the corresponding key. You

 may want to print them out. You should backup all files in this

 directory and take care to keep this backup closed away.

 Operation is further controlled by a few environment variables:

 HOME Used to locate the default home directory.

 GNUPGHOME

 If set directory used instead of "~/.gnupg".

 GPG_AGENT_INFO

 This variable is obsolete; it was used by GnuPG versions before

 2.1.

 PINENTRY_USER_DATA

 This value is passed via gpg-agent to pinentry. It is useful to

 convey extra information to a custom pinentry.

 COLUMNS

 LINES Used to size some displays to the full size of the screen.

 LANGUAGE

 Apart from its use by GNU, it is used in the W32 version to

 override the language selection done through the Registry. If

 used and set to a valid and available language name (langid),

 the file with the translation is loaded from

 gpgdir/gnupg.nls/langid.mo. Here gpgdir is the directory out of

 which the gpg binary has been loaded. If it can't be loaded the

 Registry is tried and as last resort the native Windows locale

 system is used.

 GNUPG_BUILD_ROOT

 This variable is only used by the regression test suite as a Page 90/91

 helper under operating systems without proper support to figure

 out the name of a process' text file.

 When calling the gpg-agent component gpg sends a set of environment

 variables to gpg-agent. The names of these variables can be listed us?

 ing the command:

 gpg-connect-agent 'getinfo std_env_names' /bye | awk '$1=="D" {print $2}'

BUGS

 On older systems this program should be installed as setuid(root). This

 is necessary to lock memory pages. Locking memory pages prevents the

 operating system from writing memory pages (which may contain

 passphrases or other sensitive material) to disk. If you get no warning

 message about insecure memory your operating system supports locking

 without being root. The program drops root privileges as soon as locked

 memory is allocated.

 Note also that some systems (especially laptops) have the ability to

 ``suspend to disk'' (also known as ``safe sleep'' or ``hibernate'').

 This writes all memory to disk before going into a low power or even

 powered off mode. Unless measures are taken in the operating system to

 protect the saved memory, passphrases or other sensitive material may

 be recoverable from it later.

 Before you report a bug you should first search the mailing list ar?

 chives for similar problems and second check whether such a bug has al?

 ready been reported to our bug tracker at https://bugs.gnupg.org.

SEE ALSO

 gpgv(1), gpgsm(1), gpg-agent(1)

 The full documentation for this tool is maintained as a Texinfo manual.

 If GnuPG and the info program are properly installed at your site, the

 command

 info gnupg

 should give you access to the complete manual including a menu struc?

 ture and an index.

GnuPG 2.3.3 2021-10-06 GPG(1)

Page 91/91

