
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'hdestroy.3' command

$ man hdestroy.3

HSEARCH(3) Linux Programmer's Manual HSEARCH(3)

NAME

 hcreate, hdestroy, hsearch, hcreate_r, hdestroy_r, hsearch_r - hash ta?

 ble management

SYNOPSIS

 #include <search.h>

 int hcreate(size_t nel);

 ENTRY *hsearch(ENTRY item, ACTION action);

 void hdestroy(void);

 #define _GNU_SOURCE /* See feature_test_macros(7) */

 #include <search.h>

 int hcreate_r(size_t nel, struct hsearch_data *htab);

 int hsearch_r(ENTRY item, ACTION action, ENTRY **retval,

 struct hsearch_data *htab);

 void hdestroy_r(struct hsearch_data *htab);

DESCRIPTION

 The three functions hcreate(), hsearch(), and hdestroy() allow the

 caller to create and manage a hash search table containing entries con?

 sisting of a key (a string) and associated data. Using these func?

 tions, only one hash table can be used at a time.

 The three functions hcreate_r(), hsearch_r(), hdestroy_r() are reen?

 trant versions that allow a program to use more than one hash search

 table at the same time. The last argument, htab, points to a structure Page 1/6

 that describes the table on which the function is to operate. The pro?

 grammer should treat this structure as opaque (i.e., do not attempt to

 directly access or modify the fields in this structure).

 First a hash table must be created using hcreate(). The argument nel

 specifies the maximum number of entries in the table. (This maximum

 cannot be changed later, so choose it wisely.) The implementation may

 adjust this value upward to improve the performance of the resulting

 hash table.

 The hcreate_r() function performs the same task as hcreate(), but for

 the table described by the structure *htab. The structure pointed to

 by htab must be zeroed before the first call to hcreate_r().

 The function hdestroy() frees the memory occupied by the hash table

 that was created by hcreate(). After calling hdestroy(), a new hash

 table can be created using hcreate(). The hdestroy_r() function per?

 forms the analogous task for a hash table described by *htab, which was

 previously created using hcreate_r().

 The hsearch() function searches the hash table for an item with the

 same key as item (where "the same" is determined using strcmp(3)), and

 if successful returns a pointer to it.

 The argument item is of type ENTRY, which is defined in <search.h> as

 follows:

 typedef struct entry {

 char *key;

 void *data;

 } ENTRY;

 The field key points to a null-terminated string which is the search

 key. The field data points to data that is associated with that key.

 The argument action determines what hsearch() does after an unsuccess?

 ful search. This argument must either have the value ENTER, meaning

 insert a copy of item (and return a pointer to the new hash table entry

 as the function result), or the value FIND, meaning that NULL should be

 returned. (If action is FIND, then data is ignored.)

 The hsearch_r() function is like hsearch() but operates on the hash ta? Page 2/6

 ble described by *htab. The hsearch_r() function differs from

 hsearch() in that a pointer to the found item is returned in *retval,

 rather than as the function result.

RETURN VALUE

 hcreate() and hcreate_r() return nonzero on success. They return 0 on

 error, with errno set to indicate the cause of the error.

 On success, hsearch() returns a pointer to an entry in the hash table.

 hsearch() returns NULL on error, that is, if action is ENTER and the

 hash table is full, or action is FIND and item cannot be found in the

 hash table. hsearch_r() returns nonzero on success, and 0 on error.

 In the event of an error, these two functions set errno to indicate the

 cause of the error.

ERRORS

 hcreate_r() and hdestroy_r() can fail for the following reasons:

 EINVAL htab is NULL.

 hsearch() and hsearch_r() can fail for the following reasons:

 ENOMEM action was ENTER, key was not found in the table, and there was

 no room in the table to add a new entry.

 ESRCH action was FIND, and key was not found in the table.

 POSIX.1 specifies only the ENOMEM error.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ???

 ?Interface ? Attribute ? Value ?

 ???

 ?hcreate(), hsearch(), ? Thread safety ? MT-Unsafe race:hsearch ?

 ?hdestroy() ? ? ?

 ???

 ?hcreate_r(), hsearch_r(), ? Thread safety ? MT-Safe race:htab ?

 ?hdestroy_r() ? ? ?

 ???

CONFORMING TO Page 3/6

 The functions hcreate(), hsearch(), and hdestroy() are from SVr4, and

 are described in POSIX.1-2001 and POSIX.1-2008.

 The functions hcreate_r(), hsearch_r(), and hdestroy_r() are GNU exten?

 sions.

NOTES

 Hash table implementations are usually more efficient when the table

 contains enough free space to minimize collisions. Typically, this

 means that nel should be at least 25% larger than the maximum number of

 elements that the caller expects to store in the table.

 The hdestroy() and hdestroy_r() functions do not free the buffers

 pointed to by the key and data elements of the hash table entries. (It

 can't do this because it doesn't know whether these buffers were allo?

 cated dynamically.) If these buffers need to be freed (perhaps because

 the program is repeatedly creating and destroying hash tables, rather

 than creating a single table whose lifetime matches that of the pro?

 gram), then the program must maintain bookkeeping data structures that

 allow it to free them.

BUGS

 SVr4 and POSIX.1-2001 specify that action is significant only for un?

 successful searches, so that an ENTER should not do anything for a suc?

 cessful search. In libc and glibc (before version 2.3), the implemen?

 tation violates the specification, updating the data for the given key

 in this case.

 Individual hash table entries can be added, but not deleted.

EXAMPLES

 The following program inserts 24 items into a hash table, then prints

 some of them.

 #include <stdio.h>

 #include <stdlib.h>

 #include <search.h>

 static char *data[] = { "alpha", "bravo", "charlie", "delta",

 "echo", "foxtrot", "golf", "hotel", "india", "juliet",

 "kilo", "lima", "mike", "november", "oscar", "papa", Page 4/6

 "quebec", "romeo", "sierra", "tango", "uniform",

 "victor", "whisky", "x-ray", "yankee", "zulu"

 };

 int

 main(void)

 {

 ENTRY e;

 ENTRY *ep;

 hcreate(30);

 for (int i = 0; i < 24; i++) {

 e.key = data[i];

 /* data is just an integer, instead of a

 pointer to something */

 e.data = (void *) i;

 ep = hsearch(e, ENTER);

 /* there should be no failures */

 if (ep == NULL) {

 fprintf(stderr, "entry failed\n");

 exit(EXIT_FAILURE);

 }

 }

 for (int i = 22; i < 26; i++) {

 /* print two entries from the table, and

 show that two are not in the table */

 e.key = data[i];

 ep = hsearch(e, FIND);

 printf("%9.9s -> %9.9s:%d\n", e.key,

 ep ? ep->key : "NULL", ep ? (int)(ep->data) : 0);

 }

 hdestroy();

 exit(EXIT_SUCCESS);

 }

SEE ALSO Page 5/6

 bsearch(3), lsearch(3), malloc(3), tsearch(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

GNU 2020-11-01 HSEARCH(3)

Page 6/6

