
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'inotify.7' command

$ man inotify.7

INOTIFY(7) Linux Programmer's Manual INOTIFY(7)

NAME

 inotify - monitoring filesystem events

DESCRIPTION

 The inotify API provides a mechanism for monitoring filesystem events.

 Inotify can be used to monitor individual files, or to monitor directo?

 ries. When a directory is monitored, inotify will return events for

 the directory itself, and for files inside the directory.

 The following system calls are used with this API:

 * inotify_init(2) creates an inotify instance and returns a file de?

 scriptor referring to the inotify instance. The more recent ino?

 tify_init1(2) is like inotify_init(2), but has a flags argument that

 provides access to some extra functionality.

 * inotify_add_watch(2) manipulates the "watch list" associated with an

 inotify instance. Each item ("watch") in the watch list specifies

 the pathname of a file or directory, along with some set of events

 that the kernel should monitor for the file referred to by that

 pathname. inotify_add_watch(2) either creates a new watch item, or

 modifies an existing watch. Each watch has a unique "watch descrip?

 tor", an integer returned by inotify_add_watch(2) when the watch is

 created.

 * When events occur for monitored files and directories, those events

 are made available to the application as structured data that can be Page 1/18

 read from the inotify file descriptor using read(2) (see below).

 * inotify_rm_watch(2) removes an item from an inotify watch list.

 * When all file descriptors referring to an inotify instance have been

 closed (using close(2)), the underlying object and its resources are

 freed for reuse by the kernel; all associated watches are automati?

 cally freed.

 With careful programming, an application can use inotify to efficiently

 monitor and cache the state of a set of filesystem objects. However,

 robust applications should allow for the fact that bugs in the monitor?

 ing logic or races of the kind described below may leave the cache in?

 consistent with the filesystem state. It is probably wise to do some

 consistency checking, and rebuild the cache when inconsistencies are

 detected.

 Reading events from an inotify file descriptor

 To determine what events have occurred, an application read(2)s from

 the inotify file descriptor. If no events have so far occurred, then,

 assuming a blocking file descriptor, read(2) will block until at least

 one event occurs (unless interrupted by a signal, in which case the

 call fails with the error EINTR; see signal(7)).

 Each successful read(2) returns a buffer containing one or more of the

 following structures:

 struct inotify_event {

 int wd; /* Watch descriptor */

 uint32_t mask; /* Mask describing event */

 uint32_t cookie; /* Unique cookie associating related

 events (for rename(2)) */

 uint32_t len; /* Size of name field */

 char name[]; /* Optional null-terminated name */

 };

 wd identifies the watch for which this event occurs. It is one of the

 watch descriptors returned by a previous call to inotify_add_watch(2).

 mask contains bits that describe the event that occurred (see below).

 cookie is a unique integer that connects related events. Currently, Page 2/18

 this is used only for rename events, and allows the resulting pair of

 IN_MOVED_FROM and IN_MOVED_TO events to be connected by the applica?

 tion. For all other event types, cookie is set to 0.

 The name field is present only when an event is returned for a file in?

 side a watched directory; it identifies the filename within the watched

 directory. This filename is null-terminated, and may include further

 null bytes ('\0') to align subsequent reads to a suitable address

 boundary.

 The len field counts all of the bytes in name, including the null

 bytes; the length of each inotify_event structure is thus sizeof(struct

 inotify_event)+len.

 The behavior when the buffer given to read(2) is too small to return

 information about the next event depends on the kernel version: in ker?

 nels before 2.6.21, read(2) returns 0; since kernel 2.6.21, read(2)

 fails with the error EINVAL. Specifying a buffer of size

 sizeof(struct inotify_event) + NAME_MAX + 1

 will be sufficient to read at least one event.

 inotify events

 The inotify_add_watch(2) mask argument and the mask field of the ino?

 tify_event structure returned when read(2)ing an inotify file descrip?

 tor are both bit masks identifying inotify events. The following bits

 can be specified in mask when calling inotify_add_watch(2) and may be

 returned in the mask field returned by read(2):

 IN_ACCESS (+)

 File was accessed (e.g., read(2), execve(2)).

 IN_ATTRIB (*)

 Metadata changed?for example, permissions (e.g., chmod(2)),

 timestamps (e.g., utimensat(2)), extended attributes (setx?

 attr(2)), link count (since Linux 2.6.25; e.g., for the tar?

 get of link(2) and for unlink(2)), and user/group ID (e.g.,

 chown(2)).

 IN_CLOSE_WRITE (+)

 File opened for writing was closed. Page 3/18

 IN_CLOSE_NOWRITE (*)

 File or directory not opened for writing was closed.

 IN_CREATE (+)

 File/directory created in watched directory (e.g., open(2)

 O_CREAT, mkdir(2), link(2), symlink(2), bind(2) on a UNIX

 domain socket).

 IN_DELETE (+)

 File/directory deleted from watched directory.

 IN_DELETE_SELF

 Watched file/directory was itself deleted. (This event also

 occurs if an object is moved to another filesystem, since

 mv(1) in effect copies the file to the other filesystem and

 then deletes it from the original filesystem.) In addition,

 an IN_IGNORED event will subsequently be generated for the

 watch descriptor.

 IN_MODIFY (+)

 File was modified (e.g., write(2), truncate(2)).

 IN_MOVE_SELF

 Watched file/directory was itself moved.

 IN_MOVED_FROM (+)

 Generated for the directory containing the old filename when

 a file is renamed.

 IN_MOVED_TO (+)

 Generated for the directory containing the new filename when

 a file is renamed.

 IN_OPEN (*)

 File or directory was opened.

 Inotify monitoring is inode-based: when monitoring a file (but not when

 monitoring the directory containing a file), an event can be generated

 for activity on any link to the file (in the same or a different direc?

 tory).

 When monitoring a directory:

 * the events marked above with an asterisk (*) can occur both for the Page 4/18

 directory itself and for objects inside the directory; and

 * the events marked with a plus sign (+) occur only for objects inside

 the directory (not for the directory itself).

 Note: when monitoring a directory, events are not generated for the

 files inside the directory when the events are performed via a pathname

 (i.e., a link) that lies outside the monitored directory.

 When events are generated for objects inside a watched directory, the

 name field in the returned inotify_event structure identifies the name

 of the file within the directory.

 The IN_ALL_EVENTS macro is defined as a bit mask of all of the above

 events. This macro can be used as the mask argument when calling ino?

 tify_add_watch(2).

 Two additional convenience macros are defined:

 IN_MOVE

 Equates to IN_MOVED_FROM | IN_MOVED_TO.

 IN_CLOSE

 Equates to IN_CLOSE_WRITE | IN_CLOSE_NOWRITE.

 The following further bits can be specified in mask when calling ino?

 tify_add_watch(2):

 IN_DONT_FOLLOW (since Linux 2.6.15)

 Don't dereference pathname if it is a symbolic link.

 IN_EXCL_UNLINK (since Linux 2.6.36)

 By default, when watching events on the children of a direc?

 tory, events are generated for children even after they have

 been unlinked from the directory. This can result in large

 numbers of uninteresting events for some applications (e.g.,

 if watching /tmp, in which many applications create tempo?

 rary files whose names are immediately unlinked). Specify?

 ing IN_EXCL_UNLINK changes the default behavior, so that

 events are not generated for children after they have been

 unlinked from the watched directory.

 IN_MASK_ADD

 If a watch instance already exists for the filesystem object Page 5/18

 corresponding to pathname, add (OR) the events in mask to

 the watch mask (instead of replacing the mask); the error

 EINVAL results if IN_MASK_CREATE is also specified.

 IN_ONESHOT

 Monitor the filesystem object corresponding to pathname for

 one event, then remove from watch list.

 IN_ONLYDIR (since Linux 2.6.15)

 Watch pathname only if it is a directory; the error ENOTDIR

 results if pathname is not a directory. Using this flag

 provides an application with a race-free way of ensuring

 that the monitored object is a directory.

 IN_MASK_CREATE (since Linux 4.18)

 Watch pathname only if it does not already have a watch as?

 sociated with it; the error EEXIST results if pathname is

 already being watched.

 Using this flag provides an application with a way of ensur?

 ing that new watches do not modify existing ones. This is

 useful because multiple paths may refer to the same inode,

 and multiple calls to inotify_add_watch(2) without this flag

 may clobber existing watch masks.

 The following bits may be set in the mask field returned by read(2):

 IN_IGNORED

 Watch was removed explicitly (inotify_rm_watch(2)) or auto?

 matically (file was deleted, or filesystem was unmounted).

 See also BUGS.

 IN_ISDIR

 Subject of this event is a directory.

 IN_Q_OVERFLOW

 Event queue overflowed (wd is -1 for this event).

 IN_UNMOUNT

 Filesystem containing watched object was unmounted. In ad?

 dition, an IN_IGNORED event will subsequently be generated

 for the watch descriptor. Page 6/18

 Examples

 Suppose an application is watching the directory dir and the file

 dir/myfile for all events. The examples below show some events that

 will be generated for these two objects.

 fd = open("dir/myfile", O_RDWR);

 Generates IN_OPEN events for both dir and dir/myfile.

 read(fd, buf, count);

 Generates IN_ACCESS events for both dir and dir/myfile.

 write(fd, buf, count);

 Generates IN_MODIFY events for both dir and dir/myfile.

 fchmod(fd, mode);

 Generates IN_ATTRIB events for both dir and dir/myfile.

 close(fd);

 Generates IN_CLOSE_WRITE events for both dir and dir/myfile.

 Suppose an application is watching the directories dir1 and dir2, and

 the file dir1/myfile. The following examples show some events that may

 be generated.

 link("dir1/myfile", "dir2/new");

 Generates an IN_ATTRIB event for myfile and an IN_CREATE

 event for dir2.

 rename("dir1/myfile", "dir2/myfile");

 Generates an IN_MOVED_FROM event for dir1, an IN_MOVED_TO

 event for dir2, and an IN_MOVE_SELF event for myfile. The

 IN_MOVED_FROM and IN_MOVED_TO events will have the same

 cookie value.

 Suppose that dir1/xx and dir2/yy are (the only) links to the same file,

 and an application is watching dir1, dir2, dir1/xx, and dir2/yy. Exe?

 cuting the following calls in the order given below will generate the

 following events:

 unlink("dir2/yy");

 Generates an IN_ATTRIB event for xx (because its link count

 changes) and an IN_DELETE event for dir2.

 unlink("dir1/xx"); Page 7/18

 Generates IN_ATTRIB, IN_DELETE_SELF, and IN_IGNORED events

 for xx, and an IN_DELETE event for dir1.

 Suppose an application is watching the directory dir and (the empty)

 directory dir/subdir. The following examples show some events that may

 be generated.

 mkdir("dir/new", mode);

 Generates an IN_CREATE | IN_ISDIR event for dir.

 rmdir("dir/subdir");

 Generates IN_DELETE_SELF and IN_IGNORED events for subdir,

 and an IN_DELETE | IN_ISDIR event for dir.

 /proc interfaces

 The following interfaces can be used to limit the amount of kernel mem?

 ory consumed by inotify:

 /proc/sys/fs/inotify/max_queued_events

 The value in this file is used when an application calls ino?

 tify_init(2) to set an upper limit on the number of events that

 can be queued to the corresponding inotify instance. Events in

 excess of this limit are dropped, but an IN_Q_OVERFLOW event is

 always generated.

 /proc/sys/fs/inotify/max_user_instances

 This specifies an upper limit on the number of inotify instances

 that can be created per real user ID.

 /proc/sys/fs/inotify/max_user_watches

 This specifies an upper limit on the number of watches that can

 be created per real user ID.

VERSIONS

 Inotify was merged into the 2.6.13 Linux kernel. The required library

 interfaces were added to glibc in version 2.4. (IN_DONT_FOLLOW,

 IN_MASK_ADD, and IN_ONLYDIR were added in glibc version 2.5.)

CONFORMING TO

 The inotify API is Linux-specific.

NOTES

 Inotify file descriptors can be monitored using select(2), poll(2), and Page 8/18

 epoll(7). When an event is available, the file descriptor indicates as

 readable.

 Since Linux 2.6.25, signal-driven I/O notification is available for in?

 otify file descriptors; see the discussion of F_SETFL (for setting the

 O_ASYNC flag), F_SETOWN, and F_SETSIG in fcntl(2). The siginfo_t

 structure (described in sigaction(2)) that is passed to the signal han?

 dler has the following fields set: si_fd is set to the inotify file de?

 scriptor number; si_signo is set to the signal number; si_code is set

 to POLL_IN; and POLLIN is set in si_band.

 If successive output inotify events produced on the inotify file de?

 scriptor are identical (same wd, mask, cookie, and name), then they are

 coalesced into a single event if the older event has not yet been read

 (but see BUGS). This reduces the amount of kernel memory required for

 the event queue, but also means that an application can't use inotify

 to reliably count file events.

 The events returned by reading from an inotify file descriptor form an

 ordered queue. Thus, for example, it is guaranteed that when renaming

 from one directory to another, events will be produced in the correct

 order on the inotify file descriptor.

 The set of watch descriptors that is being monitored via an inotify

 file descriptor can be viewed via the entry for the inotify file de?

 scriptor in the process's /proc/[pid]/fdinfo directory. See proc(5)

 for further details. The FIONREAD ioctl(2) returns the number of bytes

 available to read from an inotify file descriptor.

 Limitations and caveats

 The inotify API provides no information about the user or process that

 triggered the inotify event. In particular, there is no easy way for a

 process that is monitoring events via inotify to distinguish events

 that it triggers itself from those that are triggered by other pro?

 cesses.

 Inotify reports only events that a user-space program triggers through

 the filesystem API. As a result, it does not catch remote events that

 occur on network filesystems. (Applications must fall back to polling Page 9/18

 the filesystem to catch such events.) Furthermore, various pseudo-

 filesystems such as /proc, /sys, and /dev/pts are not monitorable with

 inotify.

 The inotify API does not report file accesses and modifications that

 may occur because of mmap(2), msync(2), and munmap(2).

 The inotify API identifies affected files by filename. However, by the

 time an application processes an inotify event, the filename may al?

 ready have been deleted or renamed.

 The inotify API identifies events via watch descriptors. It is the ap?

 plication's responsibility to cache a mapping (if one is needed) be?

 tween watch descriptors and pathnames. Be aware that directory renam?

 ings may affect multiple cached pathnames.

 Inotify monitoring of directories is not recursive: to monitor subdi?

 rectories under a directory, additional watches must be created. This

 can take a significant amount time for large directory trees.

 If monitoring an entire directory subtree, and a new subdirectory is

 created in that tree or an existing directory is renamed into that

 tree, be aware that by the time you create a watch for the new subdi?

 rectory, new files (and subdirectories) may already exist inside the

 subdirectory. Therefore, you may want to scan the contents of the sub?

 directory immediately after adding the watch (and, if desired, recur?

 sively add watches for any subdirectories that it contains).

 Note that the event queue can overflow. In this case, events are lost.

 Robust applications should handle the possibility of lost events grace?

 fully. For example, it may be necessary to rebuild part or all of the

 application cache. (One simple, but possibly expensive, approach is to

 close the inotify file descriptor, empty the cache, create a new ino?

 tify file descriptor, and then re-create watches and cache entries for

 the objects to be monitored.)

 If a filesystem is mounted on top of a monitored directory, no event is

 generated, and no events are generated for objects immediately under

 the new mount point. If the filesystem is subsequently unmounted,

 events will subsequently be generated for the directory and the objects Page 10/18

 it contains.

 Dealing with rename() events

 As noted above, the IN_MOVED_FROM and IN_MOVED_TO event pair that is

 generated by rename(2) can be matched up via their shared cookie value.

 However, the task of matching has some challenges.

 These two events are usually consecutive in the event stream available

 when reading from the inotify file descriptor. However, this is not

 guaranteed. If multiple processes are triggering events for monitored

 objects, then (on rare occasions) an arbitrary number of other events

 may appear between the IN_MOVED_FROM and IN_MOVED_TO events. Further?

 more, it is not guaranteed that the event pair is atomically inserted

 into the queue: there may be a brief interval where the IN_MOVED_FROM

 has appeared, but the IN_MOVED_TO has not.

 Matching up the IN_MOVED_FROM and IN_MOVED_TO event pair generated by

 rename(2) is thus inherently racy. (Don't forget that if an object is

 renamed outside of a monitored directory, there may not even be an

 IN_MOVED_TO event.) Heuristic approaches (e.g., assume the events are

 always consecutive) can be used to ensure a match in most cases, but

 will inevitably miss some cases, causing the application to perceive

 the IN_MOVED_FROM and IN_MOVED_TO events as being unrelated. If watch

 descriptors are destroyed and re-created as a result, then those watch

 descriptors will be inconsistent with the watch descriptors in any

 pending events. (Re-creating the inotify file descriptor and rebuild?

 ing the cache may be useful to deal with this scenario.)

 Applications should also allow for the possibility that the

 IN_MOVED_FROM event was the last event that could fit in the buffer re?

 turned by the current call to read(2), and the accompanying IN_MOVED_TO

 event might be fetched only on the next read(2), which should be done

 with a (small) timeout to allow for the fact that insertion of the

 IN_MOVED_FROM-IN_MOVED_TO event pair is not atomic, and also the possi?

 bility that there may not be any IN_MOVED_TO event.

BUGS

 Before Linux 3.19, fallocate(2) did not create any inotify events. Page 11/18

 Since Linux 3.19, calls to fallocate(2) generate IN_MODIFY events.

 In kernels before 2.6.16, the IN_ONESHOT mask flag does not work.

 As originally designed and implemented, the IN_ONESHOT flag did not

 cause an IN_IGNORED event to be generated when the watch was dropped

 after one event. However, as an unintended effect of other changes,

 since Linux 2.6.36, an IN_IGNORED event is generated in this case.

 Before kernel 2.6.25, the kernel code that was intended to coalesce

 successive identical events (i.e., the two most recent events could po?

 tentially be coalesced if the older had not yet been read) instead

 checked if the most recent event could be coalesced with the oldest un?

 read event.

 When a watch descriptor is removed by calling inotify_rm_watch(2) (or

 because a watch file is deleted or the filesystem that contains it is

 unmounted), any pending unread events for that watch descriptor remain

 available to read. As watch descriptors are subsequently allocated

 with inotify_add_watch(2), the kernel cycles through the range of pos?

 sible watch descriptors (0 to INT_MAX) incrementally. When allocating

 a free watch descriptor, no check is made to see whether that watch de?

 scriptor number has any pending unread events in the inotify queue.

 Thus, it can happen that a watch descriptor is reallocated even when

 pending unread events exist for a previous incarnation of that watch

 descriptor number, with the result that the application might then read

 those events and interpret them as belonging to the file associated

 with the newly recycled watch descriptor. In practice, the likelihood

 of hitting this bug may be extremely low, since it requires that an ap?

 plication cycle through INT_MAX watch descriptors, release a watch de?

 scriptor while leaving unread events for that watch descriptor in the

 queue, and then recycle that watch descriptor. For this reason, and

 because there have been no reports of the bug occurring in real-world

 applications, as of Linux 3.15, no kernel changes have yet been made to

 eliminate this possible bug.

EXAMPLES

 The following program demonstrates the usage of the inotify API. It Page 12/18

 marks the directories passed as a command-line arguments and waits for

 events of type IN_OPEN, IN_CLOSE_NOWRITE, and IN_CLOSE_WRITE.

 The following output was recorded while editing the file

 /home/user/temp/foo and listing directory /tmp. Before the file and

 the directory were opened, IN_OPEN events occurred. After the file was

 closed, an IN_CLOSE_WRITE event occurred. After the directory was

 closed, an IN_CLOSE_NOWRITE event occurred. Execution of the program

 ended when the user pressed the ENTER key.

 Example output

 $./a.out /tmp /home/user/temp

 Press enter key to terminate.

 Listening for events.

 IN_OPEN: /home/user/temp/foo [file]

 IN_CLOSE_WRITE: /home/user/temp/foo [file]

 IN_OPEN: /tmp/ [directory]

 IN_CLOSE_NOWRITE: /tmp/ [directory]

 Listening for events stopped.

 Program source

 #include <errno.h>

 #include <poll.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <sys/inotify.h>

 #include <unistd.h>

 #include <string.h>

 /* Read all available inotify events from the file descriptor 'fd'.

 wd is the table of watch descriptors for the directories in argv.

 argc is the length of wd and argv.

 argv is the list of watched directories.

 Entry 0 of wd and argv is unused. */

 static void

 handle_events(int fd, int *wd, int argc, char* argv[])

 { Page 13/18

 /* Some systems cannot read integer variables if they are not

 properly aligned. On other systems, incorrect alignment may

 decrease performance. Hence, the buffer used for reading from

 the inotify file descriptor should have the same alignment as

 struct inotify_event. */

 char buf[4096]

 __attribute__ ((aligned(__alignof__(struct inotify_event))));

 const struct inotify_event *event;

 ssize_t len;

 /* Loop while events can be read from inotify file descriptor. */

 for (;;) {

 /* Read some events. */

 len = read(fd, buf, sizeof(buf));

 if (len == -1 && errno != EAGAIN) {

 perror("read");

 exit(EXIT_FAILURE);

 }

 /* If the nonblocking read() found no events to read, then

 it returns -1 with errno set to EAGAIN. In that case,

 we exit the loop. */

 if (len <= 0)

 break;

 /* Loop over all events in the buffer */

 for (char *ptr = buf; ptr < buf + len;

 ptr += sizeof(struct inotify_event) + event->len) {

 event = (const struct inotify_event *) ptr;

 /* Print event type */

 if (event->mask & IN_OPEN)

 printf("IN_OPEN: ");

 if (event->mask & IN_CLOSE_NOWRITE)

 printf("IN_CLOSE_NOWRITE: ");

 if (event->mask & IN_CLOSE_WRITE)

 printf("IN_CLOSE_WRITE: "); Page 14/18

 /* Print the name of the watched directory */

 for (int i = 1; i < argc; ++i) {

 if (wd[i] == event->wd) {

 printf("%s/", argv[i]);

 break;

 }

 }

 /* Print the name of the file */

 if (event->len)

 printf("%s", event->name);

 /* Print type of filesystem object */

 if (event->mask & IN_ISDIR)

 printf(" [directory]\n");

 else

 printf(" [file]\n");

 }

 }

 }

 int

 main(int argc, char* argv[])

 {

 char buf;

 int fd, i, poll_num;

 int *wd;

 nfds_t nfds;

 struct pollfd fds[2];

 if (argc < 2) {

 printf("Usage: %s PATH [PATH ...]\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 printf("Press ENTER key to terminate.\n");

 /* Create the file descriptor for accessing the inotify API */

 fd = inotify_init1(IN_NONBLOCK); Page 15/18

 if (fd == -1) {

 perror("inotify_init1");

 exit(EXIT_FAILURE);

 }

 /* Allocate memory for watch descriptors */

 wd = calloc(argc, sizeof(int));

 if (wd == NULL) {

 perror("calloc");

 exit(EXIT_FAILURE);

 }

 /* Mark directories for events

 - file was opened

 - file was closed */

 for (i = 1; i < argc; i++) {

 wd[i] = inotify_add_watch(fd, argv[i],

 IN_OPEN | IN_CLOSE);

 if (wd[i] == -1) {

 fprintf(stderr, "Cannot watch '%s': %s\n",

 argv[i], strerror(errno));

 exit(EXIT_FAILURE);

 }

 }

 /* Prepare for polling */

 nfds = 2;

 /* Console input */

 fds[0].fd = STDIN_FILENO;

 fds[0].events = POLLIN;

 /* Inotify input */

 fds[1].fd = fd;

 fds[1].events = POLLIN;

 /* Wait for events and/or terminal input */

 printf("Listening for events.\n");

 while (1) { Page 16/18

 poll_num = poll(fds, nfds, -1);

 if (poll_num == -1) {

 if (errno == EINTR)

 continue;

 perror("poll");

 exit(EXIT_FAILURE);

 }

 if (poll_num > 0) {

 if (fds[0].revents & POLLIN) {

 /* Console input is available. Empty stdin and quit */

 while (read(STDIN_FILENO, &buf, 1) > 0 && buf != '\n')

 continue;

 break;

 }

 if (fds[1].revents & POLLIN) {

 /* Inotify events are available */

 handle_events(fd, wd, argc, argv);

 }

 }

 }

 printf("Listening for events stopped.\n");

 /* Close inotify file descriptor */

 close(fd);

 free(wd);

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 inotifywait(1), inotifywatch(1), inotify_add_watch(2), inotify_init(2),

 inotify_init1(2), inotify_rm_watch(2), read(2), stat(2), fanotify(7)

 Documentation/filesystems/inotify.txt in the Linux kernel source tree

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the Page 17/18

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 INOTIFY(7)

Page 18/18

