r“‘ ,

University

FPDF Library

RedHat
Enterprise Linux

A

Manual Pages

Full credit is given to the above companies including the OS

that this PDF file was generated!

Red Hat Enterprise Linux Release 9.2 Manual Pages on 'jdb.1' command

$ man jdb.1
jdb(1) Basic Tools jdb(1)
NAME
jdb - Finds and fixes bugs in Java platform programs.
SYNOPSIS
jdb [options] [classname] [arguments]
options
Command-line options. See Options.
classname
Name of the main class to debug.
arguments
Arguments passed to the main() method of the class.
DESCRIPTION
The Java Debugger (JDB) is a simple command-line debugger for Java
classes. The jdb command and its options call the JDB. The jdb command
demonstrates the Java Platform Debugger Architecture (JDBA) and
provides inspection and debugging of a local or remote Java Virtual
Machine (JVM). See Java Platform Debugger Architecture (JDBA) at
http://docs.oracle.com/javase/8/docs/technotes/guides/jpda/index.html
START A JDB SESSION
There are many ways to start a JDB session. The most frequently used
way is to have JDB launch a new JVM with the main class of the
application to be debugged. Do this by substituting the jdb command for

the java command in the command line. For example, if your

Page 1/6

application's main class is MyClass, then use the following command to

debug it under JDB:

jdb MyClass

When started this way, the jdb command calls a second JVM with the

specified parameters, loads the specified class, and stops the JVM

before executing that class's first instruction.

Another way to use the jdb command is by attaching it to a JVM that is

already running. Syntax for starting a JVM to which the jdb command

attaches when the JVM is running is as follows. This loads in-process

debugging libraries and specifies the kind of connection to be made.

java -agentlib:jdwp=transport=dt_socket,server=y,suspend=n MyClass

You can then attach the jdb command to the JVM with the following

command:

jdb -attach 8000

The MyClass argument is not specified in the jdb command line in this

case because the jdb command is connecting to an existing JVM instead

of launching a new JVM.

There are many other ways to connect the debugger to a JVM, and all of

them are supported by the jdb command. The Java Platform Debugger

Architecture has additional documentation on these connection options.

BASIC JDB COMMANDS

The following is a list of the basic jdb commands. The JDB supports

other commands that you can list with the -help option.

help or ?
The help or ? commands display the list of recognized commands
with a brief description.

run After you start JDB and set breakpoints, you can use the run
command to execute the debugged application. The run command is
available only when the jdb command starts the debugged
application as opposed to attaching to an existing JVM.

cont Continues execution of the debugged application after a
breakpoint, exception, or step.

print Displays Java objects and primitive values. For variables or Page 2/6

fields of primitive types, the actual value is printed. For
objects, a short description is printed. See the dump command to
find out how to get more information about an object.
Note: To display local variables, the containing class must have
been compiled with the javac -g option.
The print command supports many simple Java expressions
including those with method invocations, for example:
print MyClass.myStaticField
print myObj.myInstanceField
printi+j+k (i, j, k are primities and either fields or local variables)
print myObj.myMethod() (if myMethod returns a non-null)
print new java.lang.String("Hello").length()

dump For primitive values, the dump command is identical to the print
command. For objects, the dump command prints the current value
of each field defined in the object. Static and instance fields
are included. The dump command supports the same set of
expressions as the print command.

threads
List the threads that are currently running. For each thread,
its name and current status are printed and an index that can be
used in other commands. In this example, the thread index is 4,
the thread is an instance of java.lang.Thread, the thread name
is main, and it is currently running.
4. (java.lang.Thread)Ox1 main running

thread Select a thread to be the current thread. Many jdb commands are
based on the setting of the current thread. The thread is
specified with the thread index described in the threads
command.

where The where command with no arguments dumps the stack of the
current thread. The whereall command dumps the stack of all
threads in the current thread group. The wherethreadindex
command dumps the stack of the specified thread.

If the current thread is suspended either through an event such Page 3/6

as a breakpoint or through the suspend command, then local
variables and fields can be displayed with the print and dump
commands. The up and down commands select which stack frame is
the current stack frame.
BREAKPOINTS
Breakpoints can be set in JDB at line numbers or at the first
instruction of a method, for example:
? The command stop at MyClass:22 sets a breakpoint at the first
instruction for line 22 of the source file containing MyClass.
? The command stop in java.lang.String.length sets a breakpoint at the
beginning of the method java.lang.String.length.
? The command stop in MyClass.<clinit> uses <clinit> to identify the
static initialization code for MyClass.
When a method is overloaded, you must also specify its argument types
so that the proper method can be selected for a breakpoint. For
example, MyClass.myMethod(int,java.lang.String) or MyClass.myMethod().
The clear command removes breakpoints using the following syntax: clear
MyClass:45. Using the clear or stop command with no argument displays a
list of all breakpoints currently set. The cont command continues
execution.
STEPPING
The step command advances execution to the next line whether it is in
the current stack frame or a called method. The next command advances
execution to the next line in the current stack frame.
EXCEPTIONS
When an exception occurs for which there is not a catch statement
anywhere in the throwing thread's call stack, the JVM typically prints
an exception trace and exits. When running under JDB, however, control
returns to JDB at the offending throw. You can then use the jdb command
to diagnose the cause of the exception.
Use the catch command to cause the debugged application to stop at
other thrown exceptions, for example: catch

java.io.FileNotFoundException or catchmypackage.BigTroubleException. Page 4/6

Any exception that is an instance of the specified class or subclass
stops the application at the point where it is thrown.
The ignore command negates the effect of an earlier catch command. The
ignore command does not cause the debugged JVM to ignore specific
exceptions, but only to ignore the debugger.
OPTIONS
When you use the jdb command instead of the java command on the command
line, the jdb command accepts many of the same options as the java
command, including -D, -classpath, and -X options. The following list
contains additional options that are accepted by the jdb command.
Other options are supported to provide alternate mechanisms for
connecting the debugger to the JVM it is to debug. For additional
documentation about these connection alternatives, see Java Platform
Debugger Architecture (JPDA) at
http://docs.oracle.com/javase/8/docs/technotes/guides/jpda/index.html
-help
Displays a help message.
-sourcepath dirl:dir2: . . .
Uses the specified path to search for source files in the
specified path. If this option is not specified, then use the
default path of dot (.).
-attach address
Attaches the debugger to a running JVM with the default
connection mechanism.
-listen address
Waits for a running JVM to connect to the specified address with
a standard connector.
-launch
Starts the debugged application immediately upon startup of JDB.
The -launch option removes the need for the run command. The
debugged application is launched and then stopped just before
the initial application class is loaded. At that point, you can

set any necessary breakpoints and use the cont command to Page 5/6

continue execution.
-listconnectors
List the connectors available in this JVM.
-connect connector-name:namel=valuel
Connects to the target JVM with the named connector and listed
argument values.
-dbgtrace [flags]
Prints information for debugging the jdb command.
-tclient
Runs the application in the Java HotSpot VM client.
-tserver
Runs the application in the Java HotSpot VM server.
-Joption
Passes option to the JVM, where option is one of the options
described on the reference page for the Java application
launcher. For example, -J-Xms48m sets the startup memory to 48
MB. See java(l).
OPTIONS FORWARDED TO THE DEBUGGER PROCESS
-v -verbose[:class|gc|jni]
Turns on verbose mode.
-Dname=value
Sets a system property.
-classpath dir
Lists directories separated by colons in which to look for
classes.
-Xoption
Nonstandard target JVM option.
SEE ALSO
? javac(1)
? java(l)
? javap(l)

JDK 8 21 November 2013 jdb(1)

Page 6/6

