
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'keytool-java-11-openjdk-11.0.20.0.8-3.el9.x86_64.1' command

$ man keytool-java-11-openjdk-11.0.20.0.8-3.el9.x86_64.1

keytool(1) Security Tools keytool(1)

NAME

 keytool - Manages a keystore (database) of cryptographic keys, X.509

 certificate chains, and trusted certificates.

SYNOPSIS

 keytool [commands]

 commands

 See Commands. These commands are categorized by task as follows:

 ? Create or Add Data to the Keystore

 ? -gencert

 ? -genkeypair

 ? -genseckey

 ? -importcert

 ? -importpassword

 ? Import Contents From Another Keystore

 ? -importkeystore

 ? Generate Certificate Request

 ? -certreq

 ? Export Data

 ? -exportcert

 ? Display Data

 ? -list

 ? -printcert Page 1/41

 ? -printcertreq

 ? -printcrl

 ? Manage the Keystore

 ? -storepasswd

 ? -keypasswd

 ? -delete

 ? -changealias

 ? Get Help

 ? -help

DESCRIPTION

 The keytool command is a key and certificate management utility. It

 enables users to administer their own public/private key pairs and

 associated certificates for use in self-authentication (where the user

 authenticates himself or herself to other users and services) or data

 integrity and authentication services, using digital signatures. The

 keytool command also enables users to cache the public keys (in the

 form of certificates) of their communicating peers.

 A certificate is a digitally signed statement from one entity (person,

 company, and so on.), that says that the public key (and some other

 information) of some other entity has a particular value. (See

 Certificate.) When data is digitally signed, the signature can be

 verified to check the data integrity and authenticity. Integrity means

 that the data has not been modified or tampered with, and authenticity

 means the data comes from whoever claims to have created and signed it.

 The keytool command also enables users to administer secret keys and

 passphrases used in symmetric encryption and decryption (DES).

 The keytool command stores the keys and certificates in a keystore. See

 KeyStore aliases.

COMMAND AND OPTION NOTES

 See Commands for a listing and description of the various commands.

 ? All command and option names are preceded by a minus sign (-).

 ? The options for each command can be provided in any order.

 ? All items not italicized or in braces or brackets are required to Page 2/41

 appear as is.

 ? Braces surrounding an option signify that a default value will be

 used when the option is not specified on the command line. See Option

 Defaults. Braces are also used around the -v, -rfc, and -J options,

 which only have meaning when they appear on the command line. They do

 not have any default values other than not existing.

 ? Brackets surrounding an option signify that the user is prompted for

 the values when the option is not specified on the command line. For

 the -keypass option, if you do not specify the option on the command

 line, then the keytool command first attempts to use the keystore

 password to recover the private/secret key. If this attempt fails,

 then the keytool command prompts you for the private/secret key

 password.

 ? Items in italics (option values) represent the actual values that

 must be supplied. For example, here is the format of the -printcert

 command:

 keytool -printcert {-file cert_file} {-v}

 When you specify a -printcert command, replace cert_file with the

 actual file name, as follows: keytool -printcert -file VScert.cer

 ? Option values must be put in quotation marks when they contain a

 blank (space).

 ? The -help option is the default. The keytool command is the same as

 keytool -help.

OPTION DEFAULTS

 The following examples show the defaults for various option values.

 -alias "mykey"

 -keyalg

 "DSA" (when using -genkeypair)

 "DES" (when using -genseckey)

 -keysize

 2048 (when using -genkeypair and -keyalg is "RSA")

 1024 (when using -genkeypair and -keyalg is "DSA")

 256 (when using -genkeypair and -keyalg is "EC") Page 3/41

 56 (when using -genseckey and -keyalg is "DES")

 168 (when using -genseckey and -keyalg is "DESede")

 -validity 90

 -keystore <the file named .keystore in the user's home directory>

 -storetype <the value of the "keystore.type" property in the

 security properties file, which is returned by the static

 getDefaultType method in java.security.KeyStore>

 -file

 stdin (if reading)

 stdout (if writing)

 -protected false

 In generating a public/private key pair, the signature algorithm

 (-sigalg option) is derived from the algorithm of the underlying

 private key:

 ? If the underlying private key is of type DSA, then the -sigalg option

 defaults to SHA1withDSA.

 ? If the underlying private key is of type RSA, then the -sigalg option

 defaults to SHA256withRSA.

 ? If the underlying private key is of type EC, then the -sigalg option

 defaults to SHA256withECDSA.

 For a full list of -keyalg and -sigalg arguments, see Java Cryptography

 Architecture (JCA) Reference Guide at

 http://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html#AppA

COMMON OPTIONS

 The -v option can appear for all commands except -help. When the -v

 option appears, it signifies verbose mode, which means that more

 information is provided in the output.

 There is also a -Jjavaoption argument that can appear for any command.

 When the -Jjavaoption appears, the specified javaoption string is

 passed directly to the Java interpreter. This option does not contain

 any spaces. It is useful for adjusting the execution environment or

 memory usage. For a list of possible interpreter options, type java -h

 or java -X at the command line. Page 4/41

 These options can appear for all commands operating on a keystore:

 -storetype storetype

 This qualifier specifies the type of keystore to be

 instantiated.

 -keystore keystore

 The keystore location.

 If the JKS storetype is used and a keystore file does not yet

 exist, then certain keytool commands can result in a new

 keystore file being created. For example, if keytool -genkeypair

 is called and the -keystore option is not specified, the default

 keystore file named .keystore in the user's home directory is

 created when it does not already exist. Similarly, if the

 -keystore ks_file option is specified but ks_file does not

 exist, then it is created. For more information on the JKS

 storetype, see the KeyStore Implementation section in KeyStore

 aliases.

 Note that the input stream from the -keystore option is passed

 to the KeyStore.load method. If NONE is specified as the URL,

 then a null stream is passed to the KeyStore.load method. NONE

 should be specified if the keystore is not file-based. For

 example, when it resides on a hardware token device.

 -storepass[:env| :file] argument

 The password that is used to protect the integrity of the

 keystore.

 If the modifier env or file is not specified, then the password

 has the value argument, which must be at least 6 characters

 long. Otherwise, the password is retrieved as follows:

 ? env: Retrieve the password from the environment variable named

 argument.

 ? file: Retrieve the password from the file named argument.

 Note: All other options that require passwords, such as -keypass,

 -srckeypass, -destkeypass, -srcstorepass, and -deststorepass, accept

 the env and file modifiers. Remember to separate the password option Page 5/41

 and the modifier with a colon (:).

 The password must be provided to all commands that access the keystore

 contents. For such commands, when the -storepass option is not provided

 at the command line, the user is prompted for it.

 When retrieving information from the keystore, the password is

 optional. If no password is specified, then the integrity of the

 retrieved information cannot be verified and a warning is displayed.

 -providerName provider_name

 Used to identify a cryptographic service provider's name when

 listed in the security properties file.

 -providerClass provider_class_name

 Used to specify the name of a cryptographic service provider's

 master class file when the service provider is not listed in the

 security properties file.

 -providerArg provider_arg

 Used with the -providerClass option to represent an optional

 string input argument for the constructor of

 provider_class_name.

 -protected

 Either true or false. This value should be specified as true

 when a password must be specified by way of a protected

 authentication path such as a dedicated PIN reader.Because there

 are two keystores involved in the -importkeystore command, the

 following two options -srcprotected and -destprotected are

 provided for the source keystore and the destination keystore

 respectively.

 -ext {name{:critical} {=value}}

 Denotes an X.509 certificate extension. The option can be used

 in -genkeypair and -gencert to embed extensions into the

 certificate generated, or in -certreq to show what extensions

 are requested in the certificate request. The option can appear

 multiple times. The name argument can be a supported extension

 name (see Named Extensions) or an arbitrary OID number. The Page 6/41

 value argument, when provided, denotes the argument for the

 extension. When value is omitted, that means that the default

 value of the extension or the extension requires no argument.

 The :critical modifier, when provided, means the extension's

 isCritical attribute is true; otherwise, it is false. You can

 use :c in place of :critical.

NAMED EXTENSIONS

 The keytool command supports these named extensions. The names are not

 case-sensitive).

 BC or BasicContraints

 Values: The full form is: ca:{true|false}[,pathlen:<len>] or

 <len>, which is short for ca:true,pathlen:<len>. When <len> is

 omitted, you have ca:true.

 KU or KeyUsage

 Values: usage(,usage)*, where usage can be one of

 digitalSignature, nonRepudiation (contentCommitment),

 keyEncipherment, dataEncipherment, keyAgreement, keyCertSign,

 cRLSign, encipherOnly, decipherOnly. The usage argument can be

 abbreviated with the first few letters (dig for

 digitalSignature) or in camel-case style (dS for

 digitalSignature or cRLS for cRLSign), as long as no ambiguity

 is found. The usage values are case-sensitive.

 EKU or ExtendedKeyUsage

 Values: usage(,usage)*, where usage can be one of

 anyExtendedKeyUsage, serverAuth, clientAuth, codeSigning,

 emailProtection, timeStamping, OCSPSigning, or any OID string.

 The usage argument can be abbreviated with the first few letters

 or in camel-case style, as long as no ambiguity is found. The

 usage values are case-sensitive.

 SAN or SubjectAlternativeName

 Values: type:value(,type:value)*, where type can be EMAIL, URI,

 DNS, IP, or OID. The value argument is the string format value

 for the type. Page 7/41

 IAN or IssuerAlternativeName

 Values: Same as SubjectAlternativeName.

 SIA or SubjectInfoAccess

 Values: method:location-type:location-value (,method:location-

 type:location-value)*, where method can be timeStamping,

 caRepository or any OID. The location-type and location-value

 arguments can be any type:value supported by the

 SubjectAlternativeName extension.

 AIA or AuthorityInfoAccess

 Values: Same as SubjectInfoAccess. The method argument can be

 ocsp,caIssuers, or any OID.

 When name is OID, the value is the hexadecimal dumped DER encoding of

 the extnValue for the extension excluding the OCTET STRING type and

 length bytes. Any extra character other than standard hexadecimal

 numbers (0-9, a-f, A-F) are ignored in the HEX string. Therefore, both

 01:02:03:04 and 01020304 are accepted as identical values. When there

 is no value, the extension has an empty value field.

 A special name honored, used in -gencert only, denotes how the

 extensions included in the certificate request should be honored. The

 value for this name is a comma separated list of all (all requested

 extensions are honored), name{:[critical|non-critical]} (the named

 extension is honored, but using a different isCritical attribute) and

 -name (used with all, denotes an exception). Requested extensions are

 not honored by default.

 If, besides the-ext honored option, another named or OID -ext option is

 provided, this extension is added to those already honored. However, if

 this name (or OID) also appears in the honored value, then its value

 and criticality overrides the one in the request.

 The subjectKeyIdentifier extension is always created. For non-self-

 signed certificates, the authorityKeyIdentifier is created.

 Note: Users should be aware that some combinations of extensions (and

 other certificate fields) may not conform to the Internet standard. See

 Certificate Conformance Warning. Page 8/41

COMMANDS

 -gencert

 {-rfc} {-infile infile} {-outfile outfile} {-alias alias} {-sigalg sigalg}

 {-dname dname} {-startdate startdate {-ext ext}* {-validity valDays}

 [-keypass keypass] {-keystore keystore} [-storepass storepass]

 {-storetype storetype} {-providername provider_name}

 {-providerClass provider_class_name {-providerArg provider_arg}}

 {-v} {-protected} {-Jjavaoption}

 Generates a certificate as a response to a certificate request

 file (which can be created by the keytool-certreq command). The

 command reads the request from infile (if omitted, from the

 standard input), signs it using alias's private key, and outputs

 the X.509 certificate into outfile (if omitted, to the standard

 output). When-rfc is specified, the output format is

 Base64-encoded PEM; otherwise, a binary DER is created.

 The sigalg value specifies the algorithm that should be used to

 sign the certificate. The startdate argument is the start time

 and date that the certificate is valid. The valDays argument

 tells the number of days for which the certificate should be

 considered valid.

 When dname is provided, it is used as the subject of the

 generated certificate. Otherwise, the one from the certificate

 request is used.

 The ext value shows what X.509 extensions will be embedded in

 the certificate. Read Common Options for the grammar of -ext.

 The -gencert option enables you to create certificate chains.

 The following example creates a certificate, e1, that contains

 three certificates in its certificate chain.

 The following commands creates four key pairs named ca, ca1,

 ca2, and e1:

 keytool -alias ca -dname CN=CA -genkeypair

 keytool -alias ca1 -dname CN=CA -genkeypair

 keytool -alias ca2 -dname CN=CA -genkeypair Page 9/41

 keytool -alias e1 -dname CN=E1 -genkeypair

 The following two commands create a chain of signed

 certificates; ca signs ca1 and ca1 signs ca2, all of which are

 self-issued:

 keytool -alias ca1 -certreq |

 keytool -alias ca -gencert -ext san=dns:ca1 |

 keytool -alias ca1 -importcert

 keytool -alias ca2 -certreq |

 $KT -alias ca1 -gencert -ext san=dns:ca2 |

 $KT -alias ca2 -importcert

 The following command creates the certificate e1 and stores it

 in the file e1.cert, which is signed by ca2. As a result, e1

 should contain ca, ca1, and ca2 in its certificate chain:

 keytool -alias e1 -certreq | keytool -alias ca2 -gencert > e1.cert

 -genkeypair

 {-alias alias} {-keyalg keyalg} {-keysize keysize} {-sigalg sigalg}

 [-dname dname] [-keypass keypass] {-startdate value} {-ext ext}*

 {-validity valDays} {-storetype storetype} {-keystore keystore}

 [-storepass storepass]

 {-providerClass provider_class_name {-providerArg provider_arg}}

 {-v} {-protected} {-Jjavaoption}

 Generates a key pair (a public key and associated private key).

 Wraps the public key into an X.509 v3 self-signed certificate,

 which is stored as a single-element certificate chain. This

 certificate chain and the private key are stored in a new

 keystore entry identified by alias.

 The keyalg value specifies the algorithm to be used to generate

 the key pair, and the keysize value specifies the size of each

 key to be generated. The sigalg value specifies the algorithm

 that should be used to sign the self-signed certificate. This

 algorithm must be compatible with the keyalg value.

 The dname value specifies the X.500 Distinguished Name to be

 associated with the value of alias, and is used as the issuer Page 10/41

 and subject fields in the self-signed certificate. If no

 distinguished name is provided at the command line, then the

 user is prompted for one.

 The value of keypass is a password used to protect the private

 key of the generated key pair. If no password is provided, then

 the user is prompted for it. If you press the Return key at the

 prompt, then the key password is set to the same password as the

 keystore password. The keypass value must be at least 6

 characters.

 The value of startdate specifies the issue time of the

 certificate, also known as the "Not Before" value of the X.509

 certificate's Validity field.

 The option value can be set in one of these two forms:

 ([+-]nnn[ymdHMS])+

 [yyyy/mm/dd] [HH:MM:SS]

 With the first form, the issue time is shifted by the specified

 value from the current time. The value is a concatenation of a

 sequence of subvalues. Inside each subvalue, the plus sign (+)

 means shift forward, and the minus sign (-) means shift

 backward. The time to be shifted is nnn units of years, months,

 days, hours, minutes, or seconds (denoted by a single character

 of y, m, d, H, M, or S respectively). The exact value of the

 issue time is calculated using the

 java.util.GregorianCalendar.add(int field, int amount) method on

 each subvalue, from left to right. For example, by specifying,

 the issue time will be:

 Calendar c = new GregorianCalendar();

 c.add(Calendar.YEAR, -1);

 c.add(Calendar.MONTH, 1);

 c.add(Calendar.DATE, -1);

 return c.getTime()

 With the second form, the user sets the exact issue time in two

 parts, year/month/day and hour:minute:second (using the local Page 11/41

 time zone). The user can provide only one part, which means the

 other part is the same as the current date (or time). The user

 must provide the exact number of digits as shown in the format

 definition (padding with 0 when shorter). When both the date and

 time are provided, there is one (and only one) space character

 between the two parts. The hour should always be provided in 24

 hour format.

 When the option is not provided, the start date is the current

 time. The option can be provided at most once.

 The value of valDays specifies the number of days (starting at

 the date specified by -startdate, or the current date when

 -startdate is not specified) for which the certificate should be

 considered valid.

 This command was named -genkey in earlier releases. The old name

 is still supported in this release. The new name, -genkeypair,

 is preferred going forward.

 -genseckey

 {-alias alias} {-keyalg keyalg} {-keysize keysize} [-keypass keypass]

 {-storetype storetype} {-keystore keystore} [-storepass storepass]

 {-providerClass provider_class_name {-providerArg provider_arg}} {-v}

 {-protected} {-Jjavaoption}

 Generates a secret key and stores it in a new

 KeyStore.SecretKeyEntry identified by alias.

 The value of keyalg specifies the algorithm to be used to

 generate the secret key, and the value of keysize specifies the

 size of the key to be generated. The keypass value is a password

 that protects the secret key. If no password is provided, then

 the user is prompted for it. If you press the Return key at the

 prompt, then the key password is set to the same password that

 is used for the keystore. The keypass value must be at least 6

 characters.

 -importcert

 {-alias alias} {-file cert_file} [-keypass keypass] {-noprompt} {-trustcacerts} Page 12/41

 {-storetype storetype} {-keystore keystore} [-storepass storepass]

 {-providerName provider_name}

 {-providerClass provider_class_name {-providerArg provider_arg}}

 {-v} {-protected} {-Jjavaoption}

 Reads the certificate or certificate chain (where the latter is

 supplied in a PKCS#7 formatted reply or a sequence of X.509

 certificates) from the file cert_file, and stores it in the

 keystore entry identified by alias. If no file is specified,

 then the certificate or certificate chain is read from stdin.

 The keytool command can import X.509 v1, v2, and v3

 certificates, and PKCS#7 formatted certificate chains consisting

 of certificates of that type. The data to be imported must be

 provided either in binary encoding format or in printable

 encoding format (also known as Base64 encoding) as defined by

 the Internet RFC 1421 standard. In the latter case, the encoding

 must be bounded at the beginning by a string that starts with

 -----BEGIN, and bounded at the end by a string that starts with

 -----END.

 You import a certificate for two reasons: To add it to the list

 of trusted certificates, and to import a certificate reply

 received from a certificate authority (CA) as the result of

 submitting a Certificate Signing Request to that CA (see the

 -certreq option in Commands).

 Which type of import is intended is indicated by the value of

 the -alias option. If the alias does not point to a key entry,

 then the keytool command assumes you are adding a trusted

 certificate entry. In this case, the alias should not already

 exist in the keystore. If the alias does already exist, then the

 keytool command outputs an error because there is already a

 trusted certificate for that alias, and does not import the

 certificate. If the alias points to a key entry, then the

 keytool command assumes you are importing a certificate reply.

 -importpassword Page 13/41

 {-alias alias} [-keypass keypass] {-storetype storetype} {-keystore keystore}

 [-storepass storepass]

 {-providerClass provider_class_name {-providerArg provider_arg}}

 {-v} {-protected} {-Jjavaoption}

 Imports a passphrase and stores it in a new

 KeyStore.SecretKeyEntry identified by alias. The passphrase may

 be supplied via the standard input stream; otherwise the user is

 prompted for it. keypass is a password used to protect the

 imported passphrase. If no password is provided, the user is

 prompted for it. If you press the Return key at the prompt, the

 key password is set to the same password as that used for the

 keystore. keypass must be at least 6 characters long.

 -importkeystore

 {-srcstoretype srcstoretype} {-deststoretype deststoretype}

 [-srcstorepass srcstorepass] [-deststorepass deststorepass] {-srcprotected}

 {-destprotected}

 {-srcalias srcalias {-destalias destalias} [-srckeypass srckeypass]}

 [-destkeypass destkeypass] {-noprompt}

 {-srcProviderName src_provider_name} {-destProviderName dest_provider_name}

 {-providerClass provider_class_name {-providerArg provider_arg}} {-v}

 {-protected} {-Jjavaoption}

 Imports a single entry or all entries from a source keystore to

 a destination keystore.

 When the -srcalias option is provided, the command imports the

 single entry identified by the alias to the destination

 keystore. If a destination alias is not provided with destalias,

 then srcalias is used as the destination alias. If the source

 entry is protected by a password, then srckeypass is used to

 recover the entry. If srckeypass is not provided, then the

 keytool command attempts to use srcstorepass to recover the

 entry. If srcstorepass is either not provided or is incorrect,

 then the user is prompted for a password. The destination entry

 is protected with destkeypass. If destkeypass is not provided, Page 14/41

 then the destination entry is protected with the source entry

 password. For example, most third-party tools require storepass

 and keypass in a PKCS #12 keystore to be the same. In order to

 create a PKCS #12 keystore for these tools, always specify a

 -destkeypass to be the same as -deststorepass.

 If the -srcalias option is not provided, then all entries in the

 source keystore are imported into the destination keystore. Each

 destination entry is stored under the alias from the source

 entry. If the source entry is protected by a password, then

 srcstorepass is used to recover the entry. If srcstorepass is

 either not provided or is incorrect, then the user is prompted

 for a password. If a source keystore entry type is not supported

 in the destination keystore, or if an error occurs while storing

 an entry into the destination keystore, then the user is

 prompted whether to skip the entry and continue or to quit. The

 destination entry is protected with the source entry password.

 If the destination alias already exists in the destination

 keystore, then the user is prompted to either overwrite the

 entry or to create a new entry under a different alias name.

 If the -noprompt option is provided, then the user is not

 prompted for a new destination alias. Existing entries are

 overwritten with the destination alias name. Entries that cannot

 be imported are skipped and a warning is displayed.

 -printcertreq

 {-file file}

 Prints the content of a PKCS #10 format certificate request,

 which can be generated by the keytool-certreq command. The

 command reads the request from file. If there is no file, then

 the request is read from the standard input.

 -certreq

 {-alias alias} {-dname dname} {-sigalg sigalg} {-file certreq_file}

 [-keypass keypass] {-storetype storetype} {-keystore keystore}

 [-storepass storepass] {-providerName provider_name} Page 15/41

 {-providerClass provider_class_name {-providerArg provider_arg}}

 {-v} {-protected} {-Jjavaoption}

 Generates a Certificate Signing Request (CSR) using the PKCS #10

 format.

 A CSR is intended to be sent to a certificate authority (CA).

 The CA authenticates the certificate requestor (usually off-

 line) and will return a certificate or certificate chain, used

 to replace the existing certificate chain (which initially

 consists of a self-signed certificate) in the keystore.

 The private key associated with alias is used to create the PKCS

 #10 certificate request. To access the private key, the correct

 password must be provided. If keypass is not provided at the

 command line and is different from the password used to protect

 the integrity of the keystore, then the user is prompted for it.

 If dname is provided, then it is used as the subject in the CSR.

 Otherwise, the X.500 Distinguished Name associated with alias is

 used.

 The sigalg value specifies the algorithm that should be used to

 sign the CSR.

 The CSR is stored in the file certreq_file. If no file is

 specified, then the CSR is output to stdout.

 Use the importcert command to import the response from the CA.

 -exportcert

 {-alias alias} {-file cert_file} {-storetype storetype} {-keystore keystore}

 [-storepass storepass] {-providerName provider_name}

 {-providerClass provider_class_name {-providerArg provider_arg}}

 {-rfc} {-v} {-protected} {-Jjavaoption}

 Reads from the keystore the certificate associated with alias

 and stores it in the cert_file file. When no file is specified,

 the certificate is output to stdout.

 The certificate is by default output in binary encoding. If the

 -rfc option is specified, then the output in the printable

 encoding format defined by the Internet RFC 1421 Certificate Page 16/41

 Encoding Standard.

 If alias refers to a trusted certificate, then that certificate

 is output. Otherwise, alias refers to a key entry with an

 associated certificate chain. In that case, the first

 certificate in the chain is returned. This certificate

 authenticates the public key of the entity addressed by alias.

 This command was named -export in earlier releases. The old name

 is still supported in this release. The new name, -exportcert,

 is preferred going forward.

 -list

 {-alias alias} {-storetype storetype} {-keystore keystore} [-storepass storepass]

 {-providerName provider_name}

 {-providerClass provider_class_name {-providerArg provider_arg}}

 {-v | -rfc} {-protected} {-Jjavaoption}

 Prints to stdout the contents of the keystore entry identified

 by alias. If no alias is specified, then the contents of the

 entire keystore are printed.

 This command by default prints the SHA1 fingerprint of a

 certificate. If the -v option is specified, then the certificate

 is printed in human-readable format, with additional information

 such as the owner, issuer, serial number, and any extensions. If

 the -rfc option is specified, then the certificate contents are

 printed using the printable encoding format, as defined by the

 Internet RFC 1421 Certificate Encoding Standard.

 You cannot specify both -v and -rfc.

 -printcert

 {-file cert_file | -sslserver host[:port]} {-jarfile JAR_file {-rfc} {-v}

 {-Jjavaoption}

 Reads the certificate from the file cert_file, the SSL server

 located at host:port, or the signed JAR file JAR_file (with the

 -jarfile option and prints its contents in a human-readable

 format. When no port is specified, the standard HTTPS port 443

 is assumed. Note that -sslserver and -file options cannot be Page 17/41

 provided at the same time. Otherwise, an error is reported. If

 neither option is specified, then the certificate is read from

 stdin.

 When-rfc is specified, the keytool command prints the

 certificate in PEM mode as defined by the Internet RFC 1421

 Certificate Encoding standard. See Internet RFC 1421 Certificate

 Encoding Standard.

 If the certificate is read from a file or stdin, then it might

 be either binary encoded or in printable encoding format, as

 defined by the RFC 1421 Certificate Encoding standard.

 If the SSL server is behind a firewall, then the -J-

 Dhttps.proxyHost=proxyhost and -J-Dhttps.proxyPort=proxyport

 options can be specified on the command line for proxy

 tunneling. See Java Secure Socket Extension (JSSE) Reference

 Guide at

 http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html

 Note: This option can be used independently of a keystore.

 -printcrl

 -file crl_ {-v}

 Reads the Certificate Revocation List (CRL) from the file crl_.

 A CRL is a list of digital certificates that were revoked by the

 CA that issued them. The CA generates the crl_ file.

 Note: This option can be used independently of a keystore.

 -storepasswd

 [-new new_storepass] {-storetype storetype} {-keystore keystore}

 [-storepass storepass] {-providerName provider_name}

 {-providerClass provider_class_name {-providerArg provider_arg}}

 {-v} {-Jjavaoption}

 Changes the password used to protect the integrity of the

 keystore contents. The new password is new_storepass, which must

 be at least 6 characters.

 -keypasswd

 {-alias alias} [-keypass old_keypass] [-new new_keypass] {-storetype storetype} Page 18/41

 {-keystore keystore} [-storepass storepass] {-providerName provider_name}

 {-providerClass provider_class_name {-providerArg provider_arg}} {-v}

 {-Jjavaoption}

 Changes the password under which the private/secret key

 identified by alias is protected, from old_keypass to

 new_keypass, which must be at least 6 characters.

 If the -keypass option is not provided at the command line, and

 the key password is different from the keystore password, then

 the user is prompted for it.

 If the -new option is not provided at the command line, then the

 user is prompted for it

 -delete

 [-alias alias] {-storetype storetype} {-keystore keystore} [-storepass storepass]

 {-providerName provider_name}

 {-providerClass provider_class_name {-providerArg provider_arg}}

 {-v} {-protected} {-Jjavaoption}

 Deletes from the keystore the entry identified by alias. The

 user is prompted for the alias, when no alias is provided at the

 command line.

 -changealias

 {-alias alias} [-destalias destalias] [-keypass keypass] {-storetype storetype}

 {-keystore keystore} [-storepass storepass] {-providerName provider_name}

 {-providerClass provider_class_name {-providerArg provider_arg}} {-v}

 {-protected} {-Jjavaoption}

 Move an existing keystore entry from the specified alias to a

 new alias, destalias. If no destination alias is provided, then

 the command prompts for one. If the original entry is protected

 with an entry password, then the password can be supplied with

 the -keypass option. If no key password is provided, then the

 storepass (if provided) is attempted first. If the attempt

 fails, then the user is prompted for a password.

 -help

 Lists the basic commands and their options. Page 19/41

 For more information about a specific command, enter the

 following, where command_name is the name of the command:

 keytool -command_name -help.

EXAMPLES

 This example walks through the sequence of steps to create a keystore

 for managing public/private key pair and certificates from trusted

 entities.

 GENERATE THE KEY PAIR

 First, create a keystore and generate the key pair. You can use a

 command such as the following typed as a single line:

 keytool -genkeypair -dname "cn=Mark Jones, ou=Java, o=Oracle, c=US"

 -alias business -keypass <new password for private key>

 -keystore /working/mykeystore

 -storepass <new password for keystore> -validity 180

 The command creates the keystore named mykeystore in the working

 directory (assuming it does not already exist), and assigns it the

 password specified by <new password for keystore>. It generates a

 public/private key pair for the entity whose distinguished name has a

 common name of Mark Jones, organizational unit of Java, organization of

 Oracle and two-letter country code of US. It uses the default DSA key

 generation algorithm to create the keys; both are 1024 bits.

 The command uses the default SHA1withDSA signature algorithm to create

 a self-signed certificate that includes the public key and the

 distinguished name information. The certificate is valid for 180 days,

 and is associated with the private key in a keystore entry referred to

 by the alias business. The private key is assigned the password

 specified by <new password for private key>.

 The command is significantly shorter when the option defaults are

 accepted. In this case, no options are required, and the defaults are

 used for unspecified options that have default values. You are prompted

 for any required values. You could have the following:

 keytool -genkeypair

 In this case, a keystore entry with the alias mykey is created, with a Page 20/41

 newly generated key pair and a certificate that is valid for 90 days.

 This entry is placed in the keystore named .keystore in your home

 directory. The keystore is created when it does not already exist. You

 are prompted for the distinguished name information, the keystore

 password, and the private key password.

 The rest of the examples assume you executed the -genkeypair command

 without options specified, and that you responded to the prompts with

 values equal to those specified in the first -genkeypair command. For

 example, a distinguished name of cn=Mark Jones, ou=Java, o=Oracle,

 c=US).

 REQUEST A SIGNED CERTIFICATE FROM A CA

 Generating the key pair created a self-signed certificate. A

 certificate is more likely to be trusted by others when it is signed by

 a Certification Authority (CA). To get a CA signature, first generate a

 Certificate Signing Request (CSR), as follows:

 keytool -certreq -file MarkJ.csr

 This creates a CSR for the entity identified by the default alias mykey

 and puts the request in the file named MarkJ.csr. Submit this file to a

 CA, such as VeriSign. The CA authenticates you, the requestor (usually

 off-line), and returns a certificate, signed by them, authenticating

 your public key. In some cases, the CA returns a chain of certificates,

 each one authenticating the public key of the signer of the previous

 certificate in the chain.

 IMPORT A CERTIFICATE FOR THE CA

 You now need to replace the self-signed certificate with a certificate

 chain, where each certificate in the chain authenticates the public key

 of the signer of the previous certificate in the chain, up to a root

 CA.

 Before you import the certificate reply from a CA, you need one or more

 trusted certificates in your keystore or in the cacerts keystore file.

 See -importcert in Commands.

 ? If the certificate reply is a certificate chain, then you need the

 top certificate of the chain. The root CA certificate that Page 21/41

 authenticates the public key of the CA.

 ? If the certificate reply is a single certificate, then you need a

 certificate for the issuing CA (the one that signed it). If that

 certificate is not self-signed, then you need a certificate for its

 signer, and so on, up to a self-signed root CA certificate.

 The cacerts keystore file ships with several VeriSign root CA

 certificates, so you probably will not need to import a VeriSign

 certificate as a trusted certificate in your keystore. But if you

 request a signed certificate from a different CA, and a certificate

 authenticating that CA's public key was not added to cacerts, then you

 must import a certificate from the CA as a trusted certificate.

 A certificate from a CA is usually either self-signed or signed by

 another CA, in which case you need a certificate that authenticates

 that CA's public key. Suppose company ABC, Inc., is a CA, and you

 obtain a file named ABCCA.cer that is supposed to be a self-signed

 certificate from ABC, that authenticates that CA's public key. Be

 careful to ensure the certificate is valid before you import it as a

 trusted certificate. View it first with the keytool -printcert command

 or the keytool -importcert command without the -noprompt option, and

 make sure that the displayed certificate fingerprints match the

 expected ones. You can call the person who sent the certificate, and

 compare the fingerprints that you see with the ones that they show or

 that a secure public key repository shows. Only when the fingerprints

 are equal is it guaranteed that the certificate was not replaced in

 transit with somebody else's (for example, an attacker's) certificate.

 If such an attack takes place, and you did not check the certificate

 before you imported it, then you would be trusting anything the

 attacker has signed.

 If you trust that the certificate is valid, then you can add it to your

 keystore with the following command:

 keytool -importcert -alias abc -file ABCCA.cer

 This command creates a trusted certificate entry in the keystore, with

 the data from the file ABCCA.cer, and assigns the alias abc to the Page 22/41

 entry.

 IMPORT THE CERTIFICATE REPLY FROM THE CA

 After you import a certificate that authenticates the public key of the

 CA you submitted your certificate signing request to (or there is

 already such a certificate in the cacerts file), you can import the

 certificate reply and replace your self-signed certificate with a

 certificate chain. This chain is the one returned by the CA in response

 to your request (when the CA reply is a chain), or one constructed

 (when the CA reply is a single certificate) using the certificate reply

 and trusted certificates that are already available in the keystore

 where you import the reply or in the cacerts keystore file.

 For example, if you sent your certificate signing request to VeriSign,

 then you can import the reply with the following, which assumes the

 returned certificate is named VSMarkJ.cer:

 keytool -importcert -trustcacerts -file VSMarkJ.cer

 EXPORT A CERTIFICATE THAT AUTHENTICATES THE PUBLIC KEY

 If you used the jarsigner command to sign a Java Archive (JAR) file,

 then clients that want to use the file will want to authenticate your

 signature. One way the clients can authenticate you is by first

 importing your public key certificate into their keystore as a trusted

 entry.

 You can export the certificate and supply it to your clients. As an

 example, you can copy your certificate to a file named MJ.cer with the

 following command that assumes the entry has an alias of mykey:

 keytool -exportcert -alias mykey -file MJ.cer

 With the certificate and the signed JAR file, a client can use the

 jarsigner command to authenticate your signature.

 IMPORT KEYSTORE

 The command importkeystore is used to import an entire keystore into

 another keystore, which means all entries from the source keystore,

 including keys and certificates, are all imported to the destination

 keystore within a single command. You can use this command to import

 entries from a different type of keystore. During the import, all new Page 23/41

 entries in the destination keystore will have the same alias names and

 protection passwords (for secret keys and private keys). If the keytool

 command cannot recover the private keys or secret keys from the source

 keystore, then it prompts you for a password. If it detects alias

 duplication, then it asks you for a new alias, and you can specify a

 new alias or simply allow the keytool command to overwrite the existing

 one.

 For example, to import entries from a typical JKS type keystore key.jks

 into a PKCS #11 type hardware-based keystore, use the command:

 keytool -importkeystore

 -srckeystore key.jks -destkeystore NONE

 -srcstoretype JKS -deststoretype PKCS11

 -srcstorepass <src keystore password>

 -deststorepass <destination keystore pwd>

 The importkeystore command can also be used to import a single entry

 from a source keystore to a destination keystore. In this case, besides

 the options you see in the previous example, you need to specify the

 alias you want to import. With the -srcalias option specified, you can

 also specify the destination alias name in the command line, as well as

 protection password for a secret/private key and the destination

 protection password you want. The following command demonstrates this:

 keytool -importkeystore

 -srckeystore key.jks -destkeystore NONE

 -srcstoretype JKS -deststoretype PKCS11

 -srcstorepass <src keystore password>

 -deststorepass <destination keystore pwd>

 -srcalias myprivatekey -destalias myoldprivatekey

 -srckeypass <source entry password>

 -destkeypass <destination entry password>

 -noprompt

 GENERATE CERTIFICATES FOR AN SSL SERVER

 The following are keytool commands to generate key pairs and

 certificates for three entities: Root CA (root), Intermediate CA (ca), Page 24/41

 and SSL server (server). Ensure that you store all the certificates in

 the same keystore. In these examples, RSA is the recommended the key

 algorithm.

 keytool -genkeypair -keystore root.jks -alias root -ext bc:c

 keytool -genkeypair -keystore ca.jks -alias ca -ext bc:c

 keytool -genkeypair -keystore server.jks -alias server

 keytool -keystore root.jks -alias root -exportcert -rfc > root.pem

 keytool -storepass <storepass> -keystore ca.jks -certreq -alias ca |

 keytool -storepass <storepass> -keystore root.jks

 -gencert -alias root -ext BC=0 -rfc > ca.pem

 keytool -keystore ca.jks -importcert -alias ca -file ca.pem

 keytool -storepass <storepass> -keystore server.jks -certreq -alias server |

 keytool -storepass <storepass> -keystore ca.jks -gencert -alias ca

 -ext ku:c=dig,kE -rfc > server.pem

 cat root.pem ca.pem server.pem |

 keytool -keystore server.jks -importcert -alias server

TERMS

 Keystore

 A keystore is a storage facility for cryptographic keys and

 certificates.

 Keystore entries

 Keystores can have different types of entries. The two most

 applicable entry types for the keytool command include the

 following:

 Key entries: Each entry holds very sensitive cryptographic key

 information, which is stored in a protected format to prevent

 unauthorized access. Typically, a key stored in this type of

 entry is a secret key, or a private key accompanied by the

 certificate chain for the corresponding public key. See

 Certificate Chains. The keytool command can handle both types of

 entries, while the jarsigner tool only handles the latter type

 of entry, that is private keys and their associated certificate

 chains. Page 25/41

 Trusted certificate entries: Each entry contains a single public

 key certificate that belongs to another party. The entry is

 called a trusted certificate because the keystore owner trusts

 that the public key in the certificate belongs to the identity

 identified by the subject (owner) of the certificate. The issuer

 of the certificate vouches for this, by signing the certificate.

 KeyStore aliases

 All keystore entries (key and trusted certificate entries) are

 accessed by way of unique aliases.

 An alias is specified when you add an entity to the keystore

 with the -genseckey command to generate a secret key, the

 -genkeypair command to generate a key pair (public and private

 key), or the -importcert command to add a certificate or

 certificate chain to the list of trusted certificates.

 Subsequent keytool commands must use this same alias to refer to

 the entity.

 For example, you can use the alias duke to generate a new

 public/private key pair and wrap the public key into a self-

 signed certificate with the following command. See Certificate

 Chains.

 keytool -genkeypair -alias duke -keypass dukekeypasswd

 This example specifies an initial password of dukekeypasswd

 required by subsequent commands to access the private key

 associated with the alias duke. If you later want to change

 Duke's private key password, use a command such as the

 following:

 keytool -keypasswd -alias duke -keypass dukekeypasswd -new newpass

 This changes the password from dukekeypasswd to newpass. A

 password should not be specified on a command line or in a

 script unless it is for testing purposes, or you are on a secure

 system. If you do not specify a required password option on a

 command line, then you are prompted for it.

 KeyStore implementation Page 26/41

 The KeyStore class provided in the java.security package

 supplies well-defined interfaces to access and modify the

 information in a keystore. It is possible for there to be

 multiple different concrete implementations, where each

 implementation is that for a particular type of keystore.

 Currently, two command-line tools (keytool and jarsigner) and a

 GUI-based tool named Policy Tool make use of keystore

 implementations. Because the KeyStore class is public, users can

 write additional security applications that use it.

 There is a built-in default implementation, provided by Oracle.

 It implements the keystore as a file with a proprietary keystore

 type (format) named JKS. It protects each private key with its

 individual password, and also protects the integrity of the

 entire keystore with a (possibly different) password.

 Keystore implementations are provider-based. More specifically,

 the application interfaces supplied by KeyStore are implemented

 in terms of a Service Provider Interface (SPI). That is, there

 is a corresponding abstract KeystoreSpi class, also in the

 java.security package, which defines the Service Provider

 Interface methods that providers must implement. The term

 provider refers to a package or a set of packages that supply a

 concrete implementation of a subset of services that can be

 accessed by the Java Security API. To provide a keystore

 implementation, clients must implement a provider and supply a

 KeystoreSpi subclass implementation, as described in How to

 Implement a Provider in the Java Cryptography Architecture at

 http://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/HowToImplAProvider.html

 Applications can choose different types of keystore

 implementations from different providers, using the getInstance

 factory method supplied in the KeyStore class. A keystore type

 defines the storage and data format of the keystore information,

 and the algorithms used to protect private/secret keys in the

 keystore and the integrity of the keystore. Keystore Page 27/41

 implementations of different types are not compatible.

 The keytool command works on any file-based keystore

 implementation. It treats the keystore location that is passed

 to it at the command line as a file name and converts it to a

 FileInputStream, from which it loads the keystore

 information.)The jarsigner command can read a keystore from any

 location that can be specified with a URL.

 For keytool and jarsigner, you can specify a keystore type at

 the command line, with the -storetype option. For Policy Tool,

 you can specify a keystore type with the Keystore menu.

 If you do not explicitly specify a keystore type, then the tools

 choose a keystore implementation based on the value of the

 keystore.type property specified in the security properties

 file. The security properties file is called java.security, and

 resides in the security properties directory,

 java.home\lib\security on Windows and java.home/lib/security on

 Oracle Solaris, where java.home is the runtime environment

 directory. The jre directory in the SDK or the top-level

 directory of the Java Runtime Environment (JRE).

 Each tool gets the keystore.type value and then examines all the

 currently installed providers until it finds one that implements

 a keystores of that type. It then uses the keystore

 implementation from that provider.The KeyStore class defines a

 static method named getDefaultType that lets applications and

 applets retrieve the value of the keystore.type property. The

 following line of code creates an instance of the default

 keystore type as specified in the keystore.type property:

 KeyStore keyStore = KeyStore.getInstance(KeyStore.getDefaultType());

 The default keystore type is jks, which is the proprietary type

 of the keystore implementation provided by Oracle. This is

 specified by the following line in the security properties file:

 keystore.type=jks

 To have the tools utilize a keystore implementation other than Page 28/41

 the default, you can change that line to specify a different

 keystore type. For example, if you have a provider package that

 supplies a keystore implementation for a keystore type called

 pkcs12, then change the line to the following:

 keystore.type=pkcs12

 Note: Case does not matter in keystore type designations. For

 example, JKS would be considered the same as jks.

 Certificate

 A certificate (or public-key certificate) is a digitally signed

 statement from one entity (the issuer), saying that the public

 key and some other information of another entity (the subject)

 has some specific value. The following terms are related to

 certificates:

 Public Keys: These are numbers associated with a particular

 entity, and are intended to be known to everyone who needs to

 have trusted interactions with that entity. Public keys are used

 to verify signatures.

 Digitally Signed: If some data is digitally signed, then it is

 stored with the identity of an entity and a signature that

 proves that entity knows about the data. The data is rendered

 unforgeable by signing with the entity's private key.

 Identity: A known way of addressing an entity. In some systems,

 the identity is the public key, and in others it can be anything

 from an Oracle Solaris UID to an email address to an X.509

 distinguished name.

 Signature: A signature is computed over some data using the

 private key of an entity. The signer, which in the case of a

 certificate is also known as the issuer.

 Private Keys: These are numbers, each of which is supposed to be

 known only to the particular entity whose private key it is

 (that is, it is supposed to be kept secret). Private and public

 keys exist in pairs in all public key cryptography systems (also

 referred to as public key crypto systems). In a typical public Page 29/41

 key crypto system, such as DSA, a private key corresponds to

 exactly one public key. Private keys are used to compute

 signatures.

 Entity: An entity is a person, organization, program, computer,

 business, bank, or something else you are trusting to some

 degree.

 Public key cryptography requires access to users' public keys.

 In a large-scale networked environment, it is impossible to

 guarantee that prior relationships between communicating

 entities were established or that a trusted repository exists

 with all used public keys. Certificates were invented as a

 solution to this public key distribution problem. Now a

 Certification Authority (CA) can act as a trusted third party.

 CAs are entities such as businesses that are trusted to sign

 (issue) certificates for other entities. It is assumed that CAs

 only create valid and reliable certificates because they are

 bound by legal agreements. There are many public Certification

 Authorities, such as VeriSign, Thawte, Entrust, and so on.

 You can also run your own Certification Authority using products

 such as Microsoft Certificate Server or the Entrust CA product

 for your organization. With the keytool command, it is possible

 to display, import, and export certificates. It is also possible

 to generate self-signed certificates.

 The keytool command currently handles X.509 certificates.

 X.509 Certificates

 The X.509 standard defines what information can go into a

 certificate and describes how to write it down (the data

 format). All the data in a certificate is encoded with two

 related standards called ASN.1/DER. Abstract Syntax Notation 1

 describes data. The Definite Encoding Rules describe a single

 way to store and transfer that data.

 All X.509 certificates have the following data, in addition to

 the signature: Page 30/41

 Version: This identifies which version of the X.509 standard

 applies to this certificate, which affects what information can

 be specified in it. Thus far, three versions are defined. The

 keytool command can import and export v1, v2, and v3

 certificates. It generates v3 certificates.

 X.509 Version 1 has been available since 1988, is widely

 deployed, and is the most generic.

 X.509 Version 2 introduced the concept of subject and issuer

 unique identifiers to handle the possibility of reuse of subject

 or issuer names over time. Most certificate profile documents

 strongly recommend that names not be reused and that

 certificates should not make use of unique identifiers. Version

 2 certificates are not widely used.

 X.509 Version 3 is the most recent (1996) and supports the

 notion of extensions where anyone can define an extension and

 include it in the certificate. Some common extensions are:

 KeyUsage (limits the use of the keys to particular purposes such

 as signing-only) and AlternativeNames (allows other identities

 to also be associated with this public key, for example. DNS

 names, email addresses, IP addresses). Extensions can be marked

 critical to indicate that the extension should be checked and

 enforced or used. For example, if a certificate has the KeyUsage

 extension marked critical and set to keyCertSign, then when this

 certificate is presented during SSL communication, it should be

 rejected because the certificate extension indicates that the

 associated private key should only be used for signing

 certificates and not for SSL use.

 Serial number: The entity that created the certificate is

 responsible for assigning it a serial number to distinguish it

 from other certificates it issues. This information is used in

 numerous ways. For example, when a certificate is revoked its

 serial number is placed in a Certificate Revocation List (CRL).

 Signature algorithm identifier: This identifies the algorithm Page 31/41

 used by the CA to sign the certificate.

 Issuer name: The X.500 Distinguished Name of the entity that

 signed the certificate. See X.500 Distinguished Names. This is

 typically a CA. Using this certificate implies trusting the

 entity that signed this certificate. In some cases, such as root

 or top-level CA certificates, the issuer signs its own

 certificate.

 Validity period: Each certificate is valid only for a limited

 amount of time. This period is described by a start date and

 time and an end date and time, and can be as short as a few

 seconds or almost as long as a century. The validity period

 chosen depends on a number of factors, such as the strength of

 the private key used to sign the certificate, or the amount one

 is willing to pay for a certificate. This is the expected period

 that entities can rely on the public value, when the associated

 private key has not been compromised.

 Subject name: The name of the entity whose public key the

 certificate identifies. This name uses the X.500 standard, so it

 is intended to be unique across the Internet. This is the X.500

 Distinguished Name (DN) of the entity. See X.500 Distinguished

 Names. For example,

 CN=Java Duke, OU=Java Software Division, O=Oracle Corporation, C=US

 These refer to the subject's common name (CN), organizational

 unit (OU), organization (O), and country (C).

 Subject public key information: This is the public key of the

 entity being named with an algorithm identifier that specifies

 which public key crypto system this key belongs to and any

 associated key parameters.

 Certificate Chains

 The keytool command can create and manage keystore key entries

 that each contain a private key and an associated certificate

 chain. The first certificate in the chain contains the public

 key that corresponds to the private key. Page 32/41

 When keys are first generated, the chain starts off containing a

 single element, a self-signed certificate. See -genkeypair in

 Commands. A self-signed certificate is one for which the issuer

 (signer) is the same as the subject. The subject is the entity

 whose public key is being authenticated by the certificate.

 Whenever the -genkeypair command is called to generate a new

 public/private key pair, it also wraps the public key into a

 self-signed certificate.

 Later, after a Certificate Signing Request (CSR) was generated

 with the -certreq command and sent to a Certification Authority

 (CA), the response from the CA is imported with -importcert, and

 the self-signed certificate is replaced by a chain of

 certificates. See the -certreq and -importcert options in

 Commands. At the bottom of the chain is the certificate (reply)

 issued by the CA authenticating the subject's public key. The

 next certificate in the chain is one that authenticates the CA's

 public key.

 In many cases, this is a self-signed certificate, which is a

 certificate from the CA authenticating its own public key, and

 the last certificate in the chain. In other cases, the CA might

 return a chain of certificates. In this case, the bottom

 certificate in the chain is the same (a certificate signed by

 the CA, authenticating the public key of the key entry), but the

 second certificate in the chain is a certificate signed by a

 different CA that authenticates the public key of the CA you

 sent the CSR to. The next certificate in the chain is a

 certificate that authenticates the second CA's key, and so on,

 until a self-signed root certificate is reached. Each

 certificate in the chain (after the first) authenticates the

 public key of the signer of the previous certificate in the

 chain.

 Many CAs only return the issued certificate, with no supporting

 chain, especially when there is a flat hierarchy (no Page 33/41

 intermediates CAs). In this case, the certificate chain must be

 established from trusted certificate information already stored

 in the keystore.

 A different reply format (defined by the PKCS #7 standard)

 includes the supporting certificate chain in addition to the

 issued certificate. Both reply formats can be handled by the

 keytool command.

 The top-level (root) CA certificate is self-signed. However, the

 trust into the root's public key does not come from the root

 certificate itself, but from other sources such as a newspaper.

 This is because anybody could generate a self-signed certificate

 with the distinguished name of, for example, the VeriSign root

 CA. The root CA public key is widely known. The only reason it

 is stored in a certificate is because this is the format

 understood by most tools, so the certificate in this case is

 only used as a vehicle to transport the root CA's public key.

 Before you add the root CA certificate to your keystore, you

 should view it with the -printcert option and compare the

 displayed fingerprint with the well-known fingerprint obtained

 from a newspaper, the root CA's Web page, and so on.

 The cacerts Certificates File

 A certificates file named cacerts resides in the security

 properties directory, java.home\lib\security on Windows and

 java.home/lib/security on Oracle Solaris, where java.home is the

 runtime environment's directory, which would be the jre

 directory in the SDK or the top-level directory of the JRE.

 The cacerts file represents a system-wide keystore with CA

 certificates. System administrators can configure and manage

 that file with the keytool command by specifying jks as the

 keystore type. The cacerts keystore file ships with a default

 set of root CA certificates. You can list the default

 certificates with the following command:

 keytool -list -keystore java.home/lib/security/cacerts Page 34/41

 The initial password of the cacerts keystore file is changeit.

 System administrators should change that password and the

 default access permission of that file upon installing the SDK.

 Note: It is important to verify your cacerts file. Because you

 trust the CAs in the cacerts file as entities for signing and

 issuing certificates to other entities, you must manage the

 cacerts file carefully. The cacerts file should contain only

 certificates of the CAs you trust. It is your responsibility to

 verify the trusted root CA certificates bundled in the cacerts

 file and make your own trust decisions.

 To remove an untrusted CA certificate from the cacerts file, use

 the delete option of the keytool command. You can find the

 cacerts file in the JRE installation directory. Contact your

 system administrator if you do not have permission to edit this

 file

 Internet RFC 1421 Certificate Encoding Standard

 Certificates are often stored using the printable encoding

 format defined by the Internet RFC 1421 standard, instead of

 their binary encoding. This certificate format, also known as

 Base64 encoding, makes it easy to export certificates to other

 applications by email or through some other mechanism.

 Certificates read by the -importcert and -printcert commands can

 be in either this format or binary encoded. The -exportcert

 command by default outputs a certificate in binary encoding, but

 will instead output a certificate in the printable encoding

 format, when the -rfc option is specified.

 The -list command by default prints the SHA1 fingerprint of a

 certificate. If the -v option is specified, then the certificate

 is printed in human-readable format. If the -rfc option is

 specified, then the certificate is output in the printable

 encoding format.

 In its printable encoding format, the encoded certificate is

 bounded at the beginning and end by the following text: Page 35/41

 -----BEGIN CERTIFICATE-----

 encoded certificate goes here.

 -----END CERTIFICATE-----

 X.500 Distinguished Names

 X.500 Distinguished Names are used to identify entities, such as

 those that are named by the subject and issuer (signer) fields

 of X.509 certificates. The keytool command supports the

 following subparts:

 commonName: The common name of a person such as Susan Jones.

 organizationUnit: The small organization (such as department or

 division) name. For example, Purchasing.

 localityName: The locality (city) name, for example, Palo Alto.

 stateName: State or province name, for example, California.

 country: Two-letter country code, for example, CH.

 When you supply a distinguished name string as the value of a

 -dname option, such as for the -genkeypair command, the string

 must be in the following format:

 CN=cName, OU=orgUnit, O=org, L=city, S=state, C=countryCode

 All the italicized items represent actual values and the

 previous keywords are abbreviations for the following:

 CN=commonName

 OU=organizationUnit

 O=organizationName

 L=localityName

 S=stateName

 C=country

 A sample distinguished name string is:

 CN=Mark Smith, OU=Java, O=Oracle, L=Cupertino, S=California, C=US

 A sample command using such a string is:

 keytool -genkeypair -dname "CN=Mark Smith, OU=Java, O=Oracle, L=Cupertino,

 S=California, C=US" -alias mark

 Case does not matter for the keyword abbreviations. For example,

 CN, cn, and Cn are all treated the same. Page 36/41

 Order matters; each subcomponent must appear in the designated

 order. However, it is not necessary to have all the

 subcomponents. You can use a subset, for example:

 CN=Steve Meier, OU=Java, O=Oracle, C=US

 If a distinguished name string value contains a comma, then the

 comma must be escaped by a backslash (\) character when you

 specify the string on a command line, as in:

 cn=Peter Schuster, ou=Java\, Product Development, o=Oracle, c=US

 It is never necessary to specify a distinguished name string on

 a command line. When the distinguished name is needed for a

 command, but not supplied on the command line, the user is

 prompted for each of the subcomponents. In this case, a comma

 does not need to be escaped by a backslash (\).

WARNINGS

 IMPORTING TRUSTED CERTIFICATES WARNING

 Important: Be sure to check a certificate very carefully before

 importing it as a trusted certificate.

 Windows Example:

 View the certificate first with the -printcert command or the

 -importcert command without the -noprompt option. Ensure that the

 displayed certificate fingerprints match the expected ones. For

 example, suppose sends or emails you a certificate that you put it in a

 file named \tmp\cert. Before you consider adding the certificate to

 your list of trusted certificates, you can execute a -printcert command

 to view its fingerprints, as follows:

 keytool -printcert -file \tmp\cert

 Owner: CN=ll, OU=ll, O=ll, L=ll, S=ll, C=ll

 Issuer: CN=ll, OU=ll, O=ll, L=ll, S=ll, C=ll

 Serial Number: 59092b34

 Valid from: Thu Sep 25 18:01:13 PDT 1997 until: Wed Dec 24 17:01:13 PST 1997

 Certificate Fingerprints:

 MD5: 11:81:AD:92:C8:E5:0E:A2:01:2E:D4:7A:D7:5F:07:6F

 SHA1: 20:B6:17:FA:EF:E5:55:8A:D0:71:1F:E8:D6:9D:C0:37:13:0E:5E:FE Page 37/41

 SHA256: 90:7B:70:0A:EA:DC:16:79:92:99:41:FF:8A:FE:EB:90:

 17:75:E0:90:B2:24:4D:3A:2A:16:A6:E4:11:0F:67:A4

 Oracle Solaris Example:

 View the certificate first with the -printcert command or the

 -importcert command without the -noprompt option. Ensure that the

 displayed certificate fingerprints match the expected ones. For

 example, suppose someone sends or emails you a certificate that you put

 it in a file named /tmp/cert. Before you consider adding the

 certificate to your list of trusted certificates, you can execute a

 -printcert command to view its fingerprints, as follows:

 keytool -printcert -file /tmp/cert

 Owner: CN=ll, OU=ll, O=ll, L=ll, S=ll, C=ll

 Issuer: CN=ll, OU=ll, O=ll, L=ll, S=ll, C=ll

 Serial Number: 59092b34

 Valid from: Thu Sep 25 18:01:13 PDT 1997 until: Wed Dec 24 17:01:13 PST 1997

 Certificate Fingerprints:

 MD5: 11:81:AD:92:C8:E5:0E:A2:01:2E:D4:7A:D7:5F:07:6F

 SHA1: 20:B6:17:FA:EF:E5:55:8A:D0:71:1F:E8:D6:9D:C0:37:13:0E:5E:FE

 SHA256: 90:7B:70:0A:EA:DC:16:79:92:99:41:FF:8A:FE:EB:90:

 17:75:E0:90:B2:24:4D:3A:2A:16:A6:E4:11:0F:67:A4

 Then call or otherwise contact the person who sent the certificate and

 compare the fingerprints that you see with the ones that they show.

 Only when the fingerprints are equal is it guaranteed that the

 certificate was not replaced in transit with somebody else's

 certificate such as an attacker's certificate. If such an attack took

 place, and you did not check the certificate before you imported it,

 then you would be trusting anything the attacker signed, for example, a

 JAR file with malicious class files inside.

 Note: It is not required that you execute a -printcert command before

 importing a certificate. This is because before you add a certificate

 to the list of trusted certificates in the keystore, the -importcert

 command prints out the certificate information and prompts you to

 verify it. You can then stop the import operation. However, you can do Page 38/41

 this only when you call the -importcert command without the -noprompt

 option. If the -noprompt option is specified, then there is no

 interaction with the user.

 PASSWORDS WARNING

 Most commands that operate on a keystore require the store password.

 Some commands require a private/secret key password. Passwords can be

 specified on the command line in the -storepass and -keypass options.

 However, a password should not be specified on a command line or in a

 script unless it is for testing, or you are on a secure system. When

 you do not specify a required password option on a command line, you

 are prompted for it.

 CERTIFICATE CONFORMANCE WARNING

 The Internet standard RFC 5280 has defined a profile on conforming

 X.509 certificates, which includes what values and value combinations

 are valid for certificate fields and extensions. See the standard at

 http://tools.ietf.org/rfc/rfc5280.txt

 The keytool command does not enforce all of these rules so it can

 generate certificates that do not conform to the standard. Certificates

 that do not conform to the standard might be rejected by JRE or other

 applications. Users should ensure that they provide the correct options

 for -dname, -ext, and so on.

NOTES

 IMPORT A NEW TRUSTED CERTIFICATE

 Before you add the certificate to the keystore, the keytool command

 verifies it by attempting to construct a chain of trust from that

 certificate to a self-signed certificate (belonging to a root CA),

 using trusted certificates that are already available in the keystore.

 If the -trustcacerts option was specified, then additional certificates

 are considered for the chain of trust, namely the certificates in a

 file named cacerts.

 If the keytool command fails to establish a trust path from the

 certificate to be imported up to a self-signed certificate (either from

 the keystore or the cacerts file), then the certificate information is Page 39/41

 printed, and the user is prompted to verify it by comparing the

 displayed certificate fingerprints with the fingerprints obtained from

 some other (trusted) source of information, which might be the

 certificate owner. Be very careful to ensure the certificate is valid

 before importing it as a trusted certificate. See Importing Trusted

 Certificates Warning. The user then has the option of stopping the

 import operation. If the -noprompt option is specified, then there is

 no interaction with the user.

 IMPORT A CERTIFICATE REPLY

 When you import a certificate reply, the certificate reply is validated

 with trusted certificates from the keystore, and optionally, the

 certificates configured in the cacerts keystore file when the

 -trustcacerts option is specified. See The cacerts Certificates File.

 The methods of determining whether the certificate reply is trusted are

 as follows:

 ? If the reply is a single X.509 certificate, then the keytool command

 attempts to establish a trust chain, starting at the certificate

 reply and ending at a self-signed certificate (belonging to a root

 CA). The certificate reply and the hierarchy of certificates is used

 to authenticate the certificate reply from the new certificate chain

 of aliases. If a trust chain cannot be established, then the

 certificate reply is not imported. In this case, the keytool command

 does not print the certificate and prompt the user to verify it,

 because it is very difficult for a user to determine the authenticity

 of the certificate reply.

 ? If the reply is a PKCS #7 formatted certificate chain or a sequence

 of X.509 certificates, then the chain is ordered with the user

 certificate first followed by zero or more CA certificates. If the

 chain ends with a self-signed root CA certificate and the-

 trustcacerts option was specified, the keytool command attempts to

 match it with any of the trusted certificates in the keystore or the

 cacerts keystore file. If the chain does not end with a self-signed

 root CA certificate and the -trustcacerts option was specified, the Page 40/41

 keytool command tries to find one from the trusted certificates in

 the keystore or the cacerts keystore file and add it to the end of

 the chain. If the certificate is not found and the -noprompt option

 is not specified, the information of the last certificate in the

 chain is printed, and the user is prompted to verify it.

 If the public key in the certificate reply matches the user's public

 key already stored with alias, then the old certificate chain is

 replaced with the new certificate chain in the reply. The old chain can

 only be replaced with a valid keypass, and so the password used to

 protect the private key of the entry is supplied. If no password is

 provided, and the private key password is different from the keystore

 password, the user is prompted for it.

 This command was named -import in earlier releases. This old name is

 still supported in this release. The new name, -importcert, is

 preferred going forward.

SEE ALSO

 ? jar(1)

 ? jarsigner(1)

 ? Trail: Security Features in Java SE at

 http://docs.oracle.com/javase/tutorial/security/index.html

JDK 8 03 March 2015 keytool(1)

Page 41/41

