r“‘ ,

University

FPDF Library

PDF generator

RedHat
Enterprise Linux

A

Manual Pages

Full credit is given to the above companies including the 0S
that this PDF file was generated!

Red Hat Enterprise Linux Release 9.2 Manual Pages on 'linuxaa64.efi.stub.7' command

$ man linuxaa64.efi.stub.7

SYSTEMD-STUB(7) systemd-stub SYSTEMD-STUB(7)

NAME
systemd-stub, sd-stub, linuxx64.efi.stub, linuxia32.efi.stub,
linuxaa64.efi.stub - A simple UEFI kernel boot stub

SYNOPSIS
{usr/lib/systemd/boot/efi/linuxx64.efi.stub
[usr/lib/systemd/boot/efi/linuxia32.efi.stub
Jusr/lib/systemd/boot/efi/linuxaa64.efi.stub
ESP/.../foo.efi.extra.d/*.cred
ESP/...[foo.efi.extra.d/*.raw
ESP/loader/credentials/*.cred

DESCRIPTION
systemd-stub (stored in per-architecture files linuxx64.efi.stub,
linuxia32.efi.stub, linuxaa64.efi.stub on disk) is a simple UEFI boot
stub. An UEFI boot stub is attached to a Linux kernel binary image, and
is a piece of code that runs in the UEFI firmware environment before
transitioning into the Linux kernel environment. The UEFI boot stub
ensures a Linux kernel is executable as regular UEFI binary, and is
able to do various preparations before switching the system into the
Linux world.
The UEFI boot stub looks for various resources for the kernel
invocation inside the UEFI PE binary itself. This allows combining

various resources inside a single PE binary image (usually called

Page 1/9

"Unified Kernel Image", or "UKI" for short), which may then be signed
via UEFI SecureBoot as a whole, covering all individual resources at
once. Specifically it may include:
? The ELF Linux kernel images will be looked for in the ".linux" PE
section of the executed image.
? OS release information, i.e. the os-release(5) file of the OS the
kernel belongs to, in the ".osrel" PE section.
? The initrd will be loaded from the ".initrd" PE section.
? A compiled binary DeviceTree will be looked for in the ".dtb" PE
section.
? The kernel command line to pass to the invoked kernel will be
looked for in the ".cmdline" PE section.
? A boot splash (in Windows .BMP format) to show on screen before
invoking the kernel will be looked for in the ".splash" PE section.
? A set of cryptographic signatures for expected TPM2 PCR values when
this kernel is booted, in JSON format, in the ".pcrsig" section.
This is useful for implementing TPM2 policies that bind disk
encryption and similar to kernels that are signed by a specific
key.
? A public key in PEM format matching this TPM2 PCR signature data in
the ".pcrpkey" section.
If UEFI SecureBoot is enabled and the ".cmdline” section is present in
the executed image, any attempts to override the kernel command line by
passing one as invocation parameters to the EFI binary are ignored.
Thus, in order to allow overriding the kernel command line, either
disable UEFI SecureBoot, or don't include a kernel command line PE
section in the kernel image file. If a command line is accepted via EFI
invocation parameters to the EFI binary it is measured into TPM PCR 12
(if a TPM is present).
If a DeviceTree is embedded in the ".dtb" section, it replaces an
existing DeviceTree in the corresponding EFI configuration table.
systemd-stub will ask the firmware via the "EFI_DT_FIXUP_PROTOCOL" for

hardware specific fixups to the DeviceTree. Page 2/9

The contents of seven of these eight PE sections are measured into TPM
PCR 11, that is otherwise not used. Thus, it can be pre-calculated
without too much effort. The ".pcrsig” section is not included in this
PCR measurement, since it's supposed to contain signatures for the
expected results for these measurements, i.e. of the outputs of the
measurement operation, and thus cannot also be input to it.
When ".pcrsig” and/or ".pcrpkey"” are present in a unified kernel image
their contents are passed to the booted kernel in an synthetic initrd
cpio archive that places them in the /.extra/tpm2-pcr-signature.json
and /.extra/tpm2-pcr-public-key.pem files. Typically, a tmpfiles.d(5)
line then ensures they are copied into
/run/systemd/tpm2-pcr-signature.json and
/run/systemd/tpm2-pcr-public-key.pem where they remain accessible even
after the system transitions out of the initrd environment into the
host file system. Tools such systemd-cryptsetup@.service(8), systemd-
cryptenroll(1) and systemd-creds(1) will automatically use files
present under these paths to unlock protected resources (encrypted
storage or credentials) or bind encryption to booted kernels.
COMPANION FILES
The systemd-stub UEFI boot stub automatically collects two types of
auxiliary companion files optionally placed in drop-in directories on
the same partition as the EFI binary, dynamically generates cpio initrd
archives from them, and passes them to the kernel. Specifically:
? For a kernel binary called foo.efi, it will look for files with the
.cred suffix in a directory named foo.efi.extra.d/ next to it. A
cpio archive is generated from all files found that way, placing
them in the /.extra/credentials/ directory of the initrd file
hierarchy. The main initrd may then access them in this directory.
This is supposed to be used to store auxiliary, encrypted,
authenticated credentials for use with LoadCredentialEncrypted= in
the UEFI System Partition. See systemd.exec(5) and systemd-creds(1)
for details on encrypted credentials. The generated cpio archive is

measured into TPM PCR 12 (if a TPM is present). Page 3/9

? Similarly, files foo.efi.extra.d/*.raw are packed up in a cpio
archive and placed in the /.extra/sysext/ directory in the initrd
file hierarchy. This is supposed to be used to pass additional
system extension images to the initrd. See systemd-sysext(8) for
details on system extension images. The generated cpio archive
containing these system extension images is measured into TPM PCR
13 (if a TPM is present).
? Files /loader/credentials/*.cred are packed up in a cpio archive
and placed in the /.extra/global_credentials/ directory of the
initrd file hierarchy. This is supposed to be used to pass
additional credentials to the initrd, regardless of the kernel
being booted. The generated cpio archive is measured into TPM PCR
12 (if a TPM is present)
These mechanisms may be used to parameterize and extend trusted (i.e.
signed), immutable initrd images in a reasonably safe way: all data
they contain is measured into TPM PCRs. On access they should be
further validated: in case of the credentials case by
encrypting/authenticating them via TPM, as exposed by systemd-creds
encrypt -T (see systemd-creds(1) for details); in case of the system
extension images by using signed Verity images.
TPM PCR NOTES
Note that when a unified kernel using systemd-stub is invoked the
firmware will measure it as a whole to TPM PCR 4, covering all embedded
resources, such as the stub code itself, the core kernel, the embedded
initrd and kernel command line (see above for a full list).
Also note that the Linux kernel will measure all initrds it receives
into TPM PCR 9. This means every type of initrd will be measured two or
three times: the initrd embedded in the kernel image will be measured
to PCR 4, PCR 9 and PCR 11; the initrd synthesized from credentials
will be measured to both PCR 9 and PCR 12; the initrd synthesized from
system extensions will be measured to both PCR 4 and PCR 9. Let's
summarize the OS resources and the PCRs they are measured to:

Table 1. OS Resource PCR Summary Page 4/9

PPV 7?7??7??7??7??7??7?7??7?7?7

?0S Resource ? Measurement PCR ?

PPV 7??7??7??7??7?7?7?7??7?7?7

?systemd-stub code (the 7?4 ?
?entry point of the unified ? ?
?PE binary) ? ?

PPV 7?7??7?77??7??7?7?7?7?7?7?7?7

?Core kernel code (embedded ? 4 + 11 ?
?in unified PE binary) ? ?

PPV 2?7???7?7??7?7??7??77?7???7??7?7?7?7

?0S release information ? 4+ 11 ?
?(embedded in the unified ? ?
?PE binary) ? ?

PPV ????7?77???7?7??7?7??7??77?7??7?7??77?7?7

?Main initrd (embedded in ?4+9+11 ?

?unified PE binary) ? ?

PPV 7??7?77??7?7?7?7?7?7??7?7?7

?Default kernel command ?4 +11 ?
?line (embedded in unified ? ?
?PE binary) ? ?

PPV 72??7?7???7??7?7?7?7?7???7??7?7?7?7?

?0verridden kernel command ? 12 ?
?line ? ?

PPV 77?7?7??77?2?7??7??7?7??7?7?7

?Boot splash (embedded in ?4 + 11 ?

?the unified PE binary) ? ?

PPV 7?77??7??7?77?7?7???7?7?7?7?7?

?TPM2 PCR signature JSON ?4+9 ?
?(embedded in unified PE ? ?
?binary, synthesized into ? ?
?initrd) ? ?

PPV 7?72?77?7??72?7??7??7??7?7??7?7?7

?TPM2 PCR PEM publickey ?4+9+11 2

Page 5/9

?(embedded in unified PE ? ?
?binary, synthesized into ? ?
?initrd) ? ?

P07 7?7??7?7??7??7?7?7??7?7??7?7?7?7

?Credentials (synthesized ? 9 + 12 ?
?initrd from companion ? ?
?files) ? ?

PPV 7?2??7?7??7?7??7??77?7???7??7?7?7?7

?System Extensions ?9+13 ?
?(synthesized initrd from ? ?
?companion files) ? ?

PPV ????7?77???7?7??7?7??7??77?7???7??7?7?7?7

EF

VARIABLES
The following EFI variables are defined, set and read by systemd-stub,
under the vendor UUID "4a67b082-0a4c-41cf-b6c7-440b29bb8c4f", for
communication between the boot stub and the OS:
LoaderDevicePartUulID
Contains the partition UUID of the EFI System Partition the EFI
image was run from. systemd-gpt-auto-generator(8) uses this
information to automatically find the disk booted from, in order to
discover various other partitions on the same disk automatically.
LoaderFirmwarelnfo, LoaderFirmwareType
Brief firmware information. Use bootctl(1) to view this data.
Loaderimageldentifier
The path of EFI executable, relative to the EFI System Partition's
root directory. Use bootctl(1) to view this data.
Stublnfo
Brief stub information. Use bootctl(1) to view this data.
StubPcrKernellmage
The PCR register index the kernel image, initrd image, boot splash,
devicetree database, and the embedded command line are measured
into, formatted as decimal ASCII string (e.g. "11"). This variable

is set if a measurement was successfully completed, and remains Page 6/9

unset otherwise.

StubPcrKernelParameters

The PCR register index the kernel command line and credentials are
measured into, formatted as decimal ASCII string (e.g. "12"). This
variable is set if a measurement was successfully completed, and
remains unset otherwise.

StubPcrInitRDSysExts

The PCR register index the systemd extensions for the initrd, which
are picked up from the file system the kernel image is located on.
Formatted as decimal ASCII string (e.g. "13"). This variable is

set if a measurement was successfully completed, and remains unset

otherwise.

Note that some of the variables above may also be set by the boot

loader. The stub will only set them if they aren't set already. Some of

these variables are defined by the Boot Loader Interface[1].
INITRD RESOURCES
The following resources are passed as initrd cpio archives to the
booted kernel, and thus make up the initial file system hierarchy in
the initrd execution environment:
/
The main initrd from the ".initrd" PE section of the unified kernel
image.
/.extra/credentials/*.cred
Credential files (suffix ".cred") that are placed next to the
unified kernel image (as described above) are copied into the
/.extra/credentials/ directory in the initrd execution environment.
/.extra/global_credentials/*.cred
Similar, credential files in the /loader/credentials/ directory in
the file system the unified kernel image is placed in are copied
into the /.extra/global_credentials/ directory in the initrd
execution environment.
/.extra/sysext/*.raw

System extension image files (suffix ".raw") that are placed next

Page 7/9

to the unified kernel image (as described above) are copied into
the /.extra/sysext/ directory in the initrd execution environment.
/.extra/tpm2-pcr-signature.json
The TPM2 PCR signature JSON object included in the ".pcrsig" PE
section of the unified kernel image is copied into the
/.extra/tpm2-pcr-signature.json file in the initrd execution
environment.
[.extra/tpm2-pcr-pkey.pem
The PEM public key included in the ".pcrpkey" PE section of the
unified kernel image is copied into the
[.extra/tpm2-pcr-public-key.pem file in the initrd execution
environment.
Note that all these files are located in the "tmpfs" file system the
kernel sets up for the initrd file hierarchy and are thus lost when the
system transitions from the initrd execution environment into the host
file system. If these resources shall be kept around over this
transition they need to be copied to a place that survives the
transition first, for example via a suitable tmpfiles.d(5) line. By
default, this is done for the TPM2 PCR signature and public key files.
ASSEMBLING KERNEL IMAGES
In order to assemble an UEFI PE kernel image from various components as
described above, use an objcopy(1) command line like this:
objcopy \
--add-section .osrel=0s-release --change-section-vma .osrel=0x20000 \
--add-section .cmdline=cmdline.txt --change-section-vma .cmdline=0x30000 \
--add-section .dtb=devicetree.dtb --change-section-vma .dtb=0x40000 \
--add-section .splash=splash.bmp --change-section-vma .splash=0x100000 \
--add-section .linux=vmlinux --change-section-vma .linux=0x2000000 \
--add-section .initrd=initrd.cpio --change-section-vma .initrd=0x3000000 \
lusr/lib/systemd/boot/efi/linuxx64.efi.stub \
foo-unsigned.efi
Note that these PE section offsets are example values and a properly

assembled image must not contain any overlapping sections (this Page 8/9

includes already existing sections inside the stub before assembly) or
boot may fail.
This generates one PE executable file foo-unsigned.efi from the six
individual files for OS release information, kernel command line, boot
splash image, kernel image, main initrd and UEFI boot stub.
To then sign the resulting image for UEFI SecureBoot use an sbsign(1)
command like the following:
sbsign \
--key mykey.pem \
--cert mykey.crt \
--output foo.efi \
foo-unsigned.efi
This expects a pair of X.509 private key and certificate as parameters
and then signs the UEFI PE executable we generated above for UEFI
SecureBoot and generates a signed UEFI PE executable as result.
See systemd-measure(1) for an example involving the ".pcrsig" and
".pcrpkey" sections.
SEE ALSO
systemd-boot(7), systemd.exec(5), systemd-creds(1), systemd-sysext(8),
Boot Loader Specification[2], Boot Loader Interface[1], objcopy(1),
sbsign(1), systemd-measure(1)
NOTES
1. Boot Loader Interface
https://systemd.io/BOOT_LOADER_INTERFACE
2. Boot Loader Specification
https://systemd.io/BOOT_LOADER_SPECIFICATION

systemd 252 SYSTEMD-STUB(7)

Page 9/9

