r“‘ ,

University

FPDF Library

PDF generator

RedHat
Enterprise Linux

A

Manual Pages

Full credit is given to the above companies including the 0S
that this PDF file was generated!

Red Hat Enterprise Linux Release 9.2 Manual Pages on 'longjmp.3' command
$ man longjmp.3
SETJIMP(3) Linux Programmer's Manual SETIMP(3)
NAME
setjmp, sigsetjmp, longjmp, siglongjmp - performing a nonlocal goto
SYNOPSIS
#include <setjmp.h>
int setimp(jmp_buf env);
int sigsetjmp(sigjmp_buf env, int savesigs);
void longjmp(imp_buf env, int val);
void siglongjmp(sigjmp_buf env, int val);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):
setimp(): see NOTES.
sigsetjmp(): _POSIX_C_SOURCE
DESCRIPTION
The functions described on this page are used for performing "nonlocal
gotos": transferring execution from one function to a predetermined lo?
cation in another function. The setjmp() function dynamically estab?
lishes the target to which control will later be transferred, and
longjmp() performs the transfer of execution.
The setjmp() function saves various information about the calling envi?
ronment (typically, the stack pointer, the instruction pointer, possi?
bly the values of other registers and the signal mask) in the buffer
env for later use by longjmp(). In this case, setjmp() returns 0.

The longjmp() function uses the information saved in env to transfer Page 1/5

control back to the point where setjmp() was called and to restore
("rewind") the stack to its state at the time of the setjmp() call. In
addition, and depending on the implementation (see NOTES), the values
of some other registers and the process signal mask may be restored to
their state at the time of the setjmp() call.
Following a successful longjmp(), execution continues as if setjimp()
had returned for a second time. This "fake" return can be distin?
guished from a true setjmp() call because the "fake" return returns the
value provided in val. If the programmer mistakenly passes the value 0
in val, the "fake" return will instead return 1.
sigsetjmp() and siglongjmp()

sigsetjmp() and siglongjmp() also perform nonlocal gotos, but provide
predictable handling of the process signal mask.
If, and only if, the savesigs argument provided to sigsetjmp() is non?
zero, the process's current signal mask is saved in env and will be re?
stored if a siglongjmp() is later performed with this env.

RETURN VALUE
setjmp() and sigsetjmp() return 0 when called directly; on the "fake"
return that occurs after longjmp() or siglongjmp(), the nonzero value
specified in val is returned.
The longjmp() or siglongjmp() functions do not return.

ATTRIBUTES
For an explanation of the terms used in this section, see at?
tributes(7).

PPV 2?7??77?????7?72?7?72??7?7??7??7?7??27?7?7

?Interface ? Attribute ? Value ?

PPV ?7??7?72?7?77??727?7??7?7??27?7?7

?setjmp(), sigsetjmp() ? Thread safety ? MT-Safe ?

PPV 72?7?77??7?77?7??7?7??27?7?7

?longjmp(), siglongjmp() ? Thread safety ? MT-Safe ?

PPV 727??7?7??7?727?7?72??7?277?7??7?7?7?27?7?7

CONFORMING TO

setjimp(), longjmp(): POSIX.1-2001, POSIX.1-2008, C89, C99. Page 2/5

sigsetjmp(), siglongjmp(): POSIX.1-2001, POSIX.1-2008.
NOTES

POSIX does not specify whether setjmp() will save the signal mask (to

be later restored during longjmp()). In System V it will not. In

4.3BSD it will, and there is a function _setjmp() that will not. The

behavior under Linux depends on the glibc version and the setting of

feature test macros. On Linux with glibc versions before 2.19,

setjmp() follows the System V behavior by default, but the BSD behavior

is provided if the _BSD_SOURCE feature test macro is explicitly defined

and none of _POSIX_SOURCE, POSIX_C_SOURCE, XOPEN_SOURCE, GNU_SOURCE,

or _SVID_SOURCE is defined. Since glibc 2.19, <setjmp.h> exposes only

the System V version of setjimp(). Programs that need the BSD semantics

should replace calls to setjmp() with calls to sigsetjmp() with a non?

zero savesigs argument.

setjmp() and longjmp() can be useful for dealing with errors inside

deeply nested function calls or to allow a signal handler to pass con?

trol to a specific point in the program, rather than returning to the

point where the handler interrupted the main program. In the latter

case, if you want to portably save and restore signal masks, use

sigsetjmp() and siglongjmp(). See also the discussion of program read?

ability below.

The compiler may optimize variables into registers, and longimp() may

restore the values of other registers in addition to the stack pointer

and program counter. Consequently, the values of automatic variables

are unspecified after a call to longjmp() if they meet all the follow?

ing criteria:

? they are local to the function that made the corresponding setimp()
call;

? their values are changed between the calls to setimp() and
longjmp(); and

? they are not declared as volatile.

Analogous remarks apply for siglongjmp().

Nonlocal gotos and program readability Page 3/5

While it can be abused, the traditional C "goto" statement at least has
the benefit that lexical cues (the goto statement and the target label)
allow the programmer to easily perceive the flow of control. Nonlocal
gotos provide no such cues: multiple setjmp() calls might employ the
same jmp_buf variable so that the content of the variable may change
over the lifetime of the application. Consequently, the programmer may
be forced to perform detailed reading of the code to determine the dy?
namic target of a particular longjmp() call. (To make the programmer's
life easier, each setjmp() call should employ a unique jmp_buf vari?
able.)
Adding further difficulty, the setjmp() and longjmp() calls may not
even be in the same source code module.
In summary, nonlocal gotos can make programs harder to understand and
maintain, and an alternative should be used if possible.

Caveats
If the function which called setjmp() returns before longjmp() is
called, the behavior is undefined. Some kind of subtle or unsubtle
chaos is sure to result.
If, in a multithreaded program, a longjmp() call employs an env buffer
that was initialized by a call to setjmp() in a different thread, the
behavior is undefined.
POSIX.1-2008 Technical Corrigendum 2 adds longjmp() and siglongjmp() to
the list of async-signal-safe functions. However, the standard recom?
mends avoiding the use of these functions from signal handlers and goes
on to point out that if these functions are called from a signal han?
dler that interrupted a call to a hon-async-signal-safe function (or
some equivalent, such as the steps equivalent to exit(3) that occur
upon a return from the initial call to main()), the behavior is unde?
fined if the program subsequently makes a call to a non-async-signal-
safe function. The only way of avoiding undefined behavior is to en?
sure one of the following:
* After long jumping from the signal handler, the program does not

call any non-async-signal-safe functions and does not return from Page 4/5

the initial call to main().

* Any signal whose handler performs a long jump must be blocked during
every call to a non-async-signal-safe function and no non-async-sig?
nal-safe functions are called after returning from the initial call
to main().

SEE ALSO
signal(7), signal-safety(7)
COLOPHON

This page is part of release 5.10 of the Linux man-pages project. A

description of the project, information about reporting bugs, and the

latest version of this page, can be found at
https://www.kernel.org/doc/man-pages/.

2017-03-13 SETIMP(3)

Page 5/5

