r*‘ ,

University

FPDF Library

RedHat PR ot
Enterprise Linux

Manual Pages

A

‘P 2

Full credit is given to the above companies including the 0S
that this PDF file was generated!

Red Hat Enterprise Linux Release 9.2 Manual Pages on 'loop-control.4' command
$ man loop-control.4
LOOP(4) Linux Programmer's Manual LOOP(4)
NAME
loop, loop-control - loop devices
SYNOPSIS
#include <linux/loop.h>
DESCRIPTION
The loop device is a block device that maps its data blocks not to a
physical device such as a hard disk or optical disk drive, but to the
blocks of a regular file in a filesystem or to another block device.
This can be useful for example to provide a block device for a filesys?
tem image stored in a file, so that it can be mounted with the mount(8)
command. You could do
$ dd if=/dev/zero of=file.img bs=1MiB count=10
$ sudo losetup /dev/loop4 file.img
$ sudo mkfs -t ext4 /dev/loop4
$ sudo mkdir /myloopdev
$ sudo mount /dev/loop4 /myloopdev
See losetup(8) for another example.
A transfer function can be specified for each loop device for encryp?
tion and decryption purposes.
The following ioctl(2) operations are provided by the loop block de?
vice:

LOOP_SET_FD Page 1/7

Associate the loop device with the open file whose file descrip?
tor is passed as the (third) ioctl(2) argument.
LOOP_CLR_FD
Disassociate the loop device from any file descriptor.
LOOP_SET_STATUS
Set the status of the loop device using the (third) ioctl(2) ar?
gument. This argument is a pointer to a loop_info structure,
defined in <linux/loop.h> as:
struct loop_info {
int lo_number; /*ioctl r/o */
dev_t lo_device; [*ioctlr/o */

unsigned long lo_inode; [*ioctl r/o */

dev_t lo_rdevice; /*ioctl r/o */

int lo_offset;

int lo_encrypt_type;

int lo_encrypt_key_size; /*ioctl w/o */
int lo_flags; [* ioctl riw (r/o before

Linux 2.6.25) */
char lo_name[LO_NAME_SIZE];
unsigned char lo_encrypt_key[LO_KEY_SIZE];
/* ioctl w/o */
unsigned long lo_init[2];
char reserved[4];
h

The encryption type (lo_encrypt type) should be one of
LO_CRYPT_NONE, LO_CRYPT_XOR, LO_CRYPT _DES, LO_CRYPT_FISH2,
LO_CRYPT_BLOW, LO_CRYPT_CAST128, LO_CRYPT_IDEA, LO_CRYPT_DUMMY,
LO_CRYPT_SKIPJACK, or (since Linux 2.6.0) LO_CRYPT_CRYPTOAPI.
The lo_flags field is a bit mask that can include zero or more
of the following:
LO_FLAGS_READ_ONLY

The loopback device is read-only.

LO_FLAGS_AUTOCLEAR (since Linux 2.6.25) Page 2/7

The loopback device will autodestruct on last close.
LO_FLAGS_PARTSCAN (since Linux 3.2)
Allow automatic partition scanning.
LO_FLAGS_DIRECT_IO (since Linux 4.10)
Use direct I/0O mode to access the backing file.
The only lo_flags that can be modified by LOOP_SET_STATUS are
LO_FLAGS_AUTOCLEAR and LO_FLAGS_PARTSCAN.
LOOP_GET_STATUS
Get the status of the loop device. The (third) ioctl(2) argu?
ment must be a pointer to a struct loop_info.
LOOP_CHANGE_FD (since Linux 2.6.5)
Switch the backing store of the loop device to the new file
identified file descriptor specified in the (third) ioctl(2) ar?
gument, which is an integer. This operation is possible only if
the loop device is read-only and the new backing store is the
same size and type as the old backing store.
LOOP_SET_CAPACITY (since Linux 2.6.30)
Resize a live loop device. One can change the size of the un?
derlying backing store and then use this operation so that the
loop driver learns about the new size. This operation takes no
argument.
LOOP_SET_DIRECT_IO (since Linux 4.10)
Set DIRECT I/O mode on the loop device, so that it can be used
to open backing file. The (third) ioctl(2) argument is an un?
signed long value. A nonzero represents direct I/O mode.
LOOP_SET_BLOCK_SIZE (since Linux 4.14)
Set the block size of the loop device. The (third) ioctl(2) ar?
gument is an unsigned long value. This value must be a power of
two in the range [512,pagesize]; otherwise, an EINVAL error re?
sults.
LOOP_CONFIGURE (since Linux 5.8)
Setup and configure all loop device parameters in a single step

using the (third) ioctl(2) argument. This argument is a pointer Page 3/7

to a loop_config structure, defined in <linux/loop.h> as:

struct loop_config {

3

In addition to doing what LOOP_SET_STATUS can do, LOOP_CONFIGURE

_u32 fd;
_u32 block_size;
struct loop_info64 info;

__ue4 __reserved[8];

can also be used to do the following:

* set the correct block size immediately by setting loop_con?

fig.block_size;

* explicitly request direct 1/0 mode by setting LO_FLAGS_DI?

RECT _IO in loop_config.info.lo_flags; and

* explicitly request read-only mode by setting

LO_FLAGS_READ_ONLY in loop_config.info.lo_flags.

Since Linux 2.6, there are two new ioctl(2) operations:

LOOP_SET_STATUS64, LOOP_GET_STATUS64

These are similar to LOOP_SET_STATUS and LOOP_GET_STATUS de?

scribed above but use the loop_info64 structure, which has some

additional fields and a larger range for some other fields:

struct loop_info64 {

uint64_t lo_device; [*ioctl r/o */
uinté4_tlo_inode; [* ioctl r/lo */
uint64_tlo_rdevice; [*ioctl r/o */

uinté4_tlo_offset;

uinté4_t lo_sizelimit; /* bytes, 0 == max available */

uint32_t lo_number; [* ioctl r/o */

uint32_t lo_encrypt_type;

uint32_tlo_encrypt_key_size; /* ioctl w/o */

uint32_tlo_flags; i /* ioctl r/w (r/o before
Linux 2.6.25) */

uint8_t lo_file_name[LO_NAME_SIZE];

uint8_t lo_crypt name[LO_NAME_SIZE];

Page 4/7

uint8_t lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
uinté4_tlo_init[2];
h
/dev/loop-control
Since Linux 3.1, the kernel provides the /dev/loop-control device,
which permits an application to dynamically find a free device, and to
add and remove loop devices from the system. To perform these opera?
tions, one first opens /dev/loop-control and then employs one of the
following ioctl(2) operations:
LOOP_CTL_GET_FREE
Allocate or find a free loop device for use. On success, the
device number is returned as the result of the call. This oper?
ation takes no argument.
LOOP_CTL_ADD
Add the new loop device whose device number is specified as a
long integer in the third ioctl(2) argument. On success, the
device index is returned as the result of the call. If the de?
vice is already allocated, the call fails with the error EEXIST.
LOOP_CTL_REMOVE
Remove the loop device whose device number is specified as a
long integer in the third ioctl(2) argument. On success, the
device number is returned as the result of the call. If the de?
vice is in use, the call fails with the error EBUSY.
FILES
/dev/loop*
The loop block special device files.
EXAMPLES
The program below uses the /dev/loop-control device to find a free loop
device, opens the loop device, opens a file to be used as the underly?
ing storage for the device, and then associates the loop device with
the backing store. The following shell session demonstrates the use of
the program:

$ dd if=/dev/zero of=file.img bs=1MiB count=10 Page 5/7

10+0 records in
10+0 records out
10485760 bytes (10 MB) copied, 0.00609385 s, 1.7 GB/s
$ sudo ./mnt_loop file.img
loopname = /dev/loop5
Program source
#include <fcntl.h>
#include <linux/loop.h>
#include <sysl/ioctl.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \
} while (0)
int
main(int argc, char *argv[])
{
int loopctlfd, loopfd, backingfile;
long devnr;
char loopname[4096];
if (argc 1= 2) {
fprintf(stderr, "Usage: %s backing-file\n", argv[0]);
exit(EXIT_FAILURE);
}
loopctlfd = open("/dev/loop-control", O_RDWR);
if (loopctlfd == -1)
errExit("open: /dev/loop-control");
devnr = ioctl(loopctlfd, LOOP_CTL_GET_FREE);
if (devnr == -1)
errExit("ioctl-LOOP_CTL_GET_FREE");
sprintf(loopname, "/dev/loop%ld", devnr);
printf("loopname = %s\n", loopname);

loopfd = open(loopname, O RDWR);

Page 6/7

}

if (loopfd == -1)
errExit("open: loopname");

backingfile = open(argv[1], O_RDWR);

if (backingfile == -1)
errExit("open: backing-file");

if (ioctl(loopfd, LOOP_SET_FD, backingfile) == -1)
errExit("ioctl-LOOP_SET_FD");

exit(EXIT_SUCCESS);

SEE ALSO

losetup(8), mount(8)

COLOPHON

This page is part of release 5.10 of the Linux man-pages project. A
description of the project, information about reporting bugs, and the

latest version of this page, can be found at

https://www.kernel.org/doc/man-pages/.

Linux

2020-11-01 LOOP(4)

Page 7/7

