
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'loop-control.4' command

$ man loop-control.4

LOOP(4) Linux Programmer's Manual LOOP(4)

NAME

 loop, loop-control - loop devices

SYNOPSIS

 #include <linux/loop.h>

DESCRIPTION

 The loop device is a block device that maps its data blocks not to a

 physical device such as a hard disk or optical disk drive, but to the

 blocks of a regular file in a filesystem or to another block device.

 This can be useful for example to provide a block device for a filesys?

 tem image stored in a file, so that it can be mounted with the mount(8)

 command. You could do

 $ dd if=/dev/zero of=file.img bs=1MiB count=10

 $ sudo losetup /dev/loop4 file.img

 $ sudo mkfs -t ext4 /dev/loop4

 $ sudo mkdir /myloopdev

 $ sudo mount /dev/loop4 /myloopdev

 See losetup(8) for another example.

 A transfer function can be specified for each loop device for encryp?

 tion and decryption purposes.

 The following ioctl(2) operations are provided by the loop block de?

 vice:

 LOOP_SET_FD Page 1/7

 Associate the loop device with the open file whose file descrip?

 tor is passed as the (third) ioctl(2) argument.

 LOOP_CLR_FD

 Disassociate the loop device from any file descriptor.

 LOOP_SET_STATUS

 Set the status of the loop device using the (third) ioctl(2) ar?

 gument. This argument is a pointer to a loop_info structure,

 defined in <linux/loop.h> as:

 struct loop_info {

 int lo_number; /* ioctl r/o */

 dev_t lo_device; /* ioctl r/o */

 unsigned long lo_inode; /* ioctl r/o */

 dev_t lo_rdevice; /* ioctl r/o */

 int lo_offset;

 int lo_encrypt_type;

 int lo_encrypt_key_size; /* ioctl w/o */

 int lo_flags; /* ioctl r/w (r/o before

 Linux 2.6.25) */

 char lo_name[LO_NAME_SIZE];

 unsigned char lo_encrypt_key[LO_KEY_SIZE];

 /* ioctl w/o */

 unsigned long lo_init[2];

 char reserved[4];

 };

 The encryption type (lo_encrypt_type) should be one of

 LO_CRYPT_NONE, LO_CRYPT_XOR, LO_CRYPT_DES, LO_CRYPT_FISH2,

 LO_CRYPT_BLOW, LO_CRYPT_CAST128, LO_CRYPT_IDEA, LO_CRYPT_DUMMY,

 LO_CRYPT_SKIPJACK, or (since Linux 2.6.0) LO_CRYPT_CRYPTOAPI.

 The lo_flags field is a bit mask that can include zero or more

 of the following:

 LO_FLAGS_READ_ONLY

 The loopback device is read-only.

 LO_FLAGS_AUTOCLEAR (since Linux 2.6.25) Page 2/7

 The loopback device will autodestruct on last close.

 LO_FLAGS_PARTSCAN (since Linux 3.2)

 Allow automatic partition scanning.

 LO_FLAGS_DIRECT_IO (since Linux 4.10)

 Use direct I/O mode to access the backing file.

 The only lo_flags that can be modified by LOOP_SET_STATUS are

 LO_FLAGS_AUTOCLEAR and LO_FLAGS_PARTSCAN.

 LOOP_GET_STATUS

 Get the status of the loop device. The (third) ioctl(2) argu?

 ment must be a pointer to a struct loop_info.

 LOOP_CHANGE_FD (since Linux 2.6.5)

 Switch the backing store of the loop device to the new file

 identified file descriptor specified in the (third) ioctl(2) ar?

 gument, which is an integer. This operation is possible only if

 the loop device is read-only and the new backing store is the

 same size and type as the old backing store.

 LOOP_SET_CAPACITY (since Linux 2.6.30)

 Resize a live loop device. One can change the size of the un?

 derlying backing store and then use this operation so that the

 loop driver learns about the new size. This operation takes no

 argument.

 LOOP_SET_DIRECT_IO (since Linux 4.10)

 Set DIRECT I/O mode on the loop device, so that it can be used

 to open backing file. The (third) ioctl(2) argument is an un?

 signed long value. A nonzero represents direct I/O mode.

 LOOP_SET_BLOCK_SIZE (since Linux 4.14)

 Set the block size of the loop device. The (third) ioctl(2) ar?

 gument is an unsigned long value. This value must be a power of

 two in the range [512,pagesize]; otherwise, an EINVAL error re?

 sults.

 LOOP_CONFIGURE (since Linux 5.8)

 Setup and configure all loop device parameters in a single step

 using the (third) ioctl(2) argument. This argument is a pointer Page 3/7

 to a loop_config structure, defined in <linux/loop.h> as:

 struct loop_config {

 __u32 fd;

 __u32 block_size;

 struct loop_info64 info;

 __u64 __reserved[8];

 };

 In addition to doing what LOOP_SET_STATUS can do, LOOP_CONFIGURE

 can also be used to do the following:

 * set the correct block size immediately by setting loop_con?

 fig.block_size;

 * explicitly request direct I/O mode by setting LO_FLAGS_DI?

 RECT_IO in loop_config.info.lo_flags; and

 * explicitly request read-only mode by setting

 LO_FLAGS_READ_ONLY in loop_config.info.lo_flags.

 Since Linux 2.6, there are two new ioctl(2) operations:

 LOOP_SET_STATUS64, LOOP_GET_STATUS64

 These are similar to LOOP_SET_STATUS and LOOP_GET_STATUS de?

 scribed above but use the loop_info64 structure, which has some

 additional fields and a larger range for some other fields:

 struct loop_info64 {

 uint64_t lo_device; /* ioctl r/o */

 uint64_t lo_inode; /* ioctl r/o */

 uint64_t lo_rdevice; /* ioctl r/o */

 uint64_t lo_offset;

 uint64_t lo_sizelimit; /* bytes, 0 == max available */

 uint32_t lo_number; /* ioctl r/o */

 uint32_t lo_encrypt_type;

 uint32_t lo_encrypt_key_size; /* ioctl w/o */

 uint32_t lo_flags; i /* ioctl r/w (r/o before

 Linux 2.6.25) */

 uint8_t lo_file_name[LO_NAME_SIZE];

 uint8_t lo_crypt_name[LO_NAME_SIZE]; Page 4/7

 uint8_t lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */

 uint64_t lo_init[2];

 };

 /dev/loop-control

 Since Linux 3.1, the kernel provides the /dev/loop-control device,

 which permits an application to dynamically find a free device, and to

 add and remove loop devices from the system. To perform these opera?

 tions, one first opens /dev/loop-control and then employs one of the

 following ioctl(2) operations:

 LOOP_CTL_GET_FREE

 Allocate or find a free loop device for use. On success, the

 device number is returned as the result of the call. This oper?

 ation takes no argument.

 LOOP_CTL_ADD

 Add the new loop device whose device number is specified as a

 long integer in the third ioctl(2) argument. On success, the

 device index is returned as the result of the call. If the de?

 vice is already allocated, the call fails with the error EEXIST.

 LOOP_CTL_REMOVE

 Remove the loop device whose device number is specified as a

 long integer in the third ioctl(2) argument. On success, the

 device number is returned as the result of the call. If the de?

 vice is in use, the call fails with the error EBUSY.

FILES

 /dev/loop*

 The loop block special device files.

EXAMPLES

 The program below uses the /dev/loop-control device to find a free loop

 device, opens the loop device, opens a file to be used as the underly?

 ing storage for the device, and then associates the loop device with

 the backing store. The following shell session demonstrates the use of

 the program:

 $ dd if=/dev/zero of=file.img bs=1MiB count=10 Page 5/7

 10+0 records in

 10+0 records out

 10485760 bytes (10 MB) copied, 0.00609385 s, 1.7 GB/s

 $ sudo ./mnt_loop file.img

 loopname = /dev/loop5

 Program source

 #include <fcntl.h>

 #include <linux/loop.h>

 #include <sys/ioctl.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <unistd.h>

 #define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \

 } while (0)

 int

 main(int argc, char *argv[])

 {

 int loopctlfd, loopfd, backingfile;

 long devnr;

 char loopname[4096];

 if (argc != 2) {

 fprintf(stderr, "Usage: %s backing-file\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 loopctlfd = open("/dev/loop-control", O_RDWR);

 if (loopctlfd == -1)

 errExit("open: /dev/loop-control");

 devnr = ioctl(loopctlfd, LOOP_CTL_GET_FREE);

 if (devnr == -1)

 errExit("ioctl-LOOP_CTL_GET_FREE");

 sprintf(loopname, "/dev/loop%ld", devnr);

 printf("loopname = %s\n", loopname);

 loopfd = open(loopname, O_RDWR); Page 6/7

 if (loopfd == -1)

 errExit("open: loopname");

 backingfile = open(argv[1], O_RDWR);

 if (backingfile == -1)

 errExit("open: backing-file");

 if (ioctl(loopfd, LOOP_SET_FD, backingfile) == -1)

 errExit("ioctl-LOOP_SET_FD");

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 losetup(8), mount(8)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 LOOP(4)

Page 7/7

