
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'man-pages.7' command

$ man man-pages.7

MAN-PAGES(7) Linux Programmer's Manual MAN-PAGES(7)

NAME

 man-pages - conventions for writing Linux man pages

SYNOPSIS

 man [section] title

DESCRIPTION

 This page describes the conventions that should be employed when writ?

 ing man pages for the Linux man-pages project, which documents the

 user-space API provided by the Linux kernel and the GNU C library. The

 project thus provides most of the pages in Section 2, many of the pages

 that appear in Sections 3, 4, and 7, and a few of the pages that appear

 in Sections 1, 5, and 8 of the man pages on a Linux system. The con?

 ventions described on this page may also be useful for authors writing

 man pages for other projects.

 Sections of the manual pages

 The manual Sections are traditionally defined as follows:

 1 User commands (Programs)

 Commands that can be executed by the user from within a shell.

 2 System calls

 Functions which wrap operations performed by the kernel.

 3 Library calls

 All library functions excluding the system call wrappers (Most

 of the libc functions). Page 1/19

 4 Special files (devices)

 Files found in /dev which allow to access to devices through the

 kernel.

 5 File formats and configuration files

 Describes various human-readable file formats and configuration

 files.

 6 Games

 Games and funny little programs available on the system.

 7 Overview, conventions, and miscellaneous

 Overviews or descriptions of various topics, conventions and

 protocols, character set standards, the standard filesystem lay?

 out, and miscellaneous other things.

 8 System management commands

 Commands like mount(8), many of which only root can execute.

 Macro package

 New manual pages should be marked up using the groff an.tmac package

 described in man(7). This choice is mainly for consistency: the vast

 majority of existing Linux manual pages are marked up using these

 macros.

 Conventions for source file layout

 Please limit source code line length to no more than about 75 charac?

 ters wherever possible. This helps avoid line-wrapping in some mail

 clients when patches are submitted inline.

 Title line

 The first command in a man page should be a TH command:

 .TH title section date source manual

 The arguments of the command are as follows:

 title The title of the man page, written in all caps (e.g., MAN-

 PAGES).

 section

 The section number in which the man page should be placed (e.g.,

 7).

 date The date of the last nontrivial change that was made to the man Page 2/19

 page. (Within the man-pages project, the necessary updates to

 these timestamps are handled automatically by scripts, so there

 is no need to manually update them as part of a patch.) Dates

 should be written in the form YYYY-MM-DD.

 source The source of the command, function, or system call.

 For those few man-pages pages in Sections 1 and 8, probably you

 just want to write GNU.

 For system calls, just write Linux. (An earlier practice was to

 write the version number of the kernel from which the manual

 page was being written/checked. However, this was never done

 consistently, and so was probably worse than including no ver?

 sion number. Henceforth, avoid including a version number.)

 For library calls that are part of glibc or one of the other

 common GNU libraries, just use GNU C Library, GNU, or an empty

 string.

 For Section 4 pages, use Linux.

 In cases of doubt, just write Linux, or GNU.

 manual The title of the manual (e.g., for Section 2 and 3 pages in the

 man-pages package, use Linux Programmer's Manual).

 Sections within a manual page

 The list below shows conventional or suggested sections. Most manual

 pages should include at least the highlighted sections. Arrange a new

 manual page so that sections are placed in the order shown in the list.

 NAME

 SYNOPSIS

 CONFIGURATION [Normally only in Section 4]

 DESCRIPTION

 OPTIONS [Normally only in Sections 1, 8]

 EXIT STATUS [Normally only in Sections 1, 8]

 RETURN VALUE [Normally only in Sections 2, 3]

 ERRORS [Typically only in Sections 2, 3]

 ENVIRONMENT

 FILES Page 3/19

 VERSIONS [Normally only in Sections 2, 3]

 ATTRIBUTES [Normally only in Sections 2, 3]

 CONFORMING TO

 NOTES

 BUGS

 EXAMPLES

 AUTHORS [Discouraged]

 REPORTING BUGS [Not used in man-pages]

 COPYRIGHT [Not used in man-pages]

 SEE ALSO

 Where a traditional heading would apply, please use it; this kind of

 consistency can make the information easier to understand. If you

 must, you can create your own headings if they make things easier to

 understand (this can be especially useful for pages in Sections 4 and

 5). However, before doing this, consider whether you could use the

 traditional headings, with some subsections (.SS) within those sec?

 tions.

 The following list elaborates on the contents of each of the above sec?

 tions.

 NAME The name of this manual page.

 See man(7) for important details of the line(s) that should fol?

 low the .SH NAME command. All words in this line (including the

 word immediately following the "\-") should be in lowercase, ex?

 cept where English or technical terminological convention dic?

 tates otherwise.

 SYNOPSIS

 A brief summary of the command or function's interface.

 For commands, this shows the syntax of the command and its argu?

 ments (including options); boldface is used for as-is text and

 italics are used to indicate replaceable arguments. Brackets

 ([]) surround optional arguments, vertical bars (|) separate

 choices, and ellipses (...) can be repeated. For functions, it

 shows any required data declarations or #include directives, Page 4/19

 followed by the function declaration.

 Where a feature test macro must be defined in order to obtain

 the declaration of a function (or a variable) from a header

 file, then the SYNOPSIS should indicate this, as described in

 feature_test_macros(7).

 CONFIGURATION

 Configuration details for a device.

 This section normally appears only in Section 4 pages.

 DESCRIPTION

 An explanation of what the program, function, or format does.

 Discuss how it interacts with files and standard input, and what

 it produces on standard output or standard error. Omit inter?

 nals and implementation details unless they're critical for un?

 derstanding the interface. Describe the usual case; for infor?

 mation on command-line options of a program use the OPTIONS sec?

 tion.

 When describing new behavior or new flags for a system call or

 library function, be careful to note the kernel or C library

 version that introduced the change. The preferred method of

 noting this information for flags is as part of a .TP list, in

 the following form (here, for a new system call flag):

 XYZ_FLAG (since Linux 3.7)

 Description of flag...

 Including version information is especially useful to users who

 are constrained to using older kernel or C library versions

 (which is typical in embedded systems, for example).

 OPTIONS

 A description of the command-line options accepted by a program

 and how they change its behavior.

 This section should appear only for Section 1 and 8 manual

 pages.

 EXIT STATUS

 A list of the possible exit status values of a program and the Page 5/19

 conditions that cause these values to be returned.

 This section should appear only for Section 1 and 8 manual

 pages.

 RETURN VALUE

 For Section 2 and 3 pages, this section gives a list of the val?

 ues the library routine will return to the caller and the condi?

 tions that cause these values to be returned.

 ERRORS For Section 2 and 3 manual pages, this is a list of the values

 that may be placed in errno in the event of an error, along with

 information about the cause of the errors.

 Where several different conditions produce the same error, the

 preferred approach is to create separate list entries (with du?

 plicate error names) for each of the conditions. This makes the

 separate conditions clear, may make the list easier to read, and

 allows metainformation (e.g., kernel version number where the

 condition first became applicable) to be more easily marked for

 each condition.

 The error list should be in alphabetical order.

 ENVIRONMENT

 A list of all environment variables that affect the program or

 function and how they affect it.

 FILES A list of the files the program or function uses, such as con?

 figuration files, startup files, and files the program directly

 operates on.

 Give the full pathname of these files, and use the installation

 process to modify the directory part to match user preferences.

 For many programs, the default installation location is in

 /usr/local, so your base manual page should use /usr/local as

 the base.

 ATTRIBUTES

 A summary of various attributes of the function(s) documented on

 this page. See attributes(7) for further details.

 VERSIONS Page 6/19

 A brief summary of the Linux kernel or glibc versions where a

 system call or library function appeared, or changed signifi?

 cantly in its operation.

 As a general rule, every new interface should include a VERSIONS

 section in its manual page. Unfortunately, many existing manual

 pages don't include this information (since there was no policy

 to do so when they were written). Patches to remedy this are

 welcome, but, from the perspective of programmers writing new

 code, this information probably matters only in the case of ker?

 nel interfaces that have been added in Linux 2.4 or later (i.e.,

 changes since kernel 2.2), and library functions that have been

 added to glibc since version 2.1 (i.e., changes since glibc

 2.0).

 The syscalls(2) manual page also provides information about ker?

 nel versions in which various system calls first appeared.

 CONFORMING TO

 A description of any standards or conventions that relate to the

 function or command described by the manual page.

 The preferred terms to use for the various standards are listed

 as headings in standards(7).

 For a page in Section 2 or 3, this section should note the

 POSIX.1 version(s) that the call conforms to, and also whether

 the call is specified in C99. (Don't worry too much about other

 standards like SUS, SUSv2, and XPG, or the SVr4 and 4.xBSD im?

 plementation standards, unless the call was specified in those

 standards, but isn't in the current version of POSIX.1.)

 If the call is not governed by any standards but commonly exists

 on other systems, note them. If the call is Linux-specific,

 note this.

 If this section consists of just a list of standards (which it

 commonly does), terminate the list with a period ('.').

 NOTES Miscellaneous notes.

 For Section 2 and 3 man pages you may find it useful to include Page 7/19

 subsections (SS) named Linux Notes and Glibc Notes.

 In Section 2, use the heading C library/kernel differences to

 mark off notes that describe the differences (if any) between

 the C library wrapper function for a system call and the raw

 system call interface provided by the kernel.

 BUGS A list of limitations, known defects or inconveniences, and

 other questionable activities.

 EXAMPLES

 One or more examples demonstrating how this function, file or

 command is used.

 For details on writing example programs, see Example programs

 below.

 AUTHORS

 A list of authors of the documentation or program.

 Use of an AUTHORS section is strongly discouraged. Generally,

 it is better not to clutter every page with a list of (over time

 potentially numerous) authors; if you write or significantly

 amend a page, add a copyright notice as a comment in the source

 file. If you are the author of a device driver and want to in?

 clude an address for reporting bugs, place this under the BUGS

 section.

 REPORTING BUGS

 The man-pages project doesn't use a REPORTING BUGS section in

 manual pages. Information on reporting bugs is instead supplied

 in the script-generated COLOPHON section. However, various

 projects do use a REPORTING BUGS section. it is recommended to

 place it near the foot of the page.

 COPYRIGHT

 The man-pages project doesn't use a COPYRIGHT section in manual

 pages. Copyright information is instead maintained in the page

 source. In pages where this section is present, it is recom?

 mended to place it near the foot of the page, just above SEE

 ALSO. Page 8/19

 SEE ALSO

 A comma-separated list of related man pages, possibly followed

 by other related pages or documents.

 The list should be ordered by section number and then alphabeti?

 cally by name. Do not terminate this list with a period.

 Where the SEE ALSO list contains many long manual page names, to

 improve the visual result of the output, it may be useful to em?

 ploy the .ad l (don't right justify) and .nh (don't hyphenate)

 directives. Hyphenation of individual page names can be pre?

 vented by preceding words with the string "\%".

 Given the distributed, autonomous nature of FOSS projects and

 their documentation, it is sometimes necessary?and in many cases

 desirable?that the SEE ALSO section includes references to man?

 ual pages provided by other projects.

STYLE GUIDE

 The following subsections describe the preferred style for the man-

 pages project. For details not covered below, the Chicago Manual of

 Style is usually a good source; try also grepping for preexisting usage

 in the project source tree.

 Use of gender-neutral language

 As far as possible, use gender-neutral language in the text of man

 pages. Use of "they" ("them", "themself", "their") as a gender-neutral

 singular pronoun is acceptable.

 Formatting conventions for manual pages describing commands

 For manual pages that describe a command (typically in Sections 1 and

 8), the arguments are always specified using italics, even in the SYN?

 OPSIS section.

 The name of the command, and its options, should always be formatted in

 bold.

 Formatting conventions for manual pages describing functions

 For manual pages that describe functions (typically in Sections 2 and

 3), the arguments are always specified using italics, even in the SYN?

 OPSIS section, where the rest of the function is specified in bold: Page 9/19

 int myfunction(int argc, char **argv);

 Variable names should, like argument names, be specified in italics.

 Any reference to the subject of the current manual page should be writ?

 ten with the name in bold followed by a pair of parentheses in Roman

 (normal) font. For example, in the fcntl(2) man page, references to

 the subject of the page would be written as: fcntl(). The preferred

 way to write this in the source file is:

 .BR fcntl ()

 (Using this format, rather than the use of "\fB...\fP()" makes it eas?

 ier to write tools that parse man page source files.)

 Use semantic newlines

 In the source of a manual page, new sentences should be started on new

 lines, and long sentences should split into lines at clause breaks

 (commas, semicolons, colons, and so on). This convention, sometimes

 known as "semantic newlines", makes it easier to see the effect of

 patches, which often operate at the level of individual sentences or

 sentence clauses.

 Formatting conventions (general)

 Paragraphs should be separated by suitable markers (usually either .PP

 or .IP). Do not separate paragraphs using blank lines, as this results

 in poor rendering in some output formats (such as PostScript and PDF).

 Filenames (whether pathnames, or references to header files) are always

 in italics (e.g., <stdio.h>), except in the SYNOPSIS section, where in?

 cluded files are in bold (e.g., #include <stdio.h>). When referring to

 a standard header file include, specify the header file surrounded by

 angle brackets, in the usual C way (e.g., <stdio.h>).

 Special macros, which are usually in uppercase, are in bold (e.g., MAX?

 INT). Exception: don't boldface NULL.

 When enumerating a list of error codes, the codes are in bold (this

 list usually uses the .TP macro).

 Complete commands should, if long, be written as an indented line on

 their own, with a blank line before and after the command, for example

 man 7 man-pages Page 10/19

 If the command is short, then it can be included inline in the text, in

 italic format, for example, man 7 man-pages. In this case, it may be

 worth using nonbreaking spaces ("\ ") at suitable places in the com?

 mand. Command options should be written in italics (e.g., -l).

 Expressions, if not written on a separate indented line, should be

 specified in italics. Again, the use of nonbreaking spaces may be ap?

 propriate if the expression is inlined with normal text.

 When showing example shell sessions, user input should be formatted in

 bold, for example

 $ date

 Thu Jul 7 13:01:27 CEST 2016

 Any reference to another man page should be written with the name in

 bold, always followed by the section number, formatted in Roman (nor?

 mal) font, without any separating spaces (e.g., intro(2)). The pre?

 ferred way to write this in the source file is:

 .BR intro (2)

 (Including the section number in cross references lets tools like

 man2html(1) create properly hyperlinked pages.)

 Control characters should be written in bold face, with no quotes; for

 example, ^X.

 Spelling

 Starting with release 2.59, man-pages follows American spelling conven?

 tions (previously, there was a random mix of British and American

 spellings); please write all new pages and patches according to these

 conventions.

 Aside from the well-known spelling differences, there are a few other

 subtleties to watch for:

 * American English tends to use the forms "backward", "upward", "to?

 ward", and so on rather than the British forms "backwards", "up?

 wards", "towards", and so on.

 BSD version numbers

 The classical scheme for writing BSD version numbers is x.yBSD, where

 x.y is the version number (e.g., 4.2BSD). Avoid forms such as BSD 4.3. Page 11/19

 Capitalization

 In subsection ("SS") headings, capitalize the first word in the head?

 ing, but otherwise use lowercase, except where English usage (e.g.,

 proper nouns) or programming language requirements (e.g., identifier

 names) dictate otherwise. For example:

 .SS Unicode under Linux

 Indentation of structure definitions, shell session logs, and so on

 When structure definitions, shell session logs, and so on are included

 in running text, indent them by 4 spaces (i.e., a block enclosed by

 .in +4n and .in), format them using the .EX and EE macros, and surround

 them with suitable paragraph markers (either .PP or .IP). For example:

 .PP

 .in +4n

 .EX

 int

 main(int argc, char *argv[])

 {

 return 0;

 }

 .EE

 .in

 .PP

 Preferred terms

 The following table lists some preferred terms to use in man pages,

 mainly to ensure consistency across pages.

 Term Avoid using Notes

 ??

 bit mask bitmask

 built-in builtin

 Epoch epoch For the UNIX Epoch

 (00:00:00, 1 Jan

 1970 UTC)

 filename file name Page 12/19

 filesystem file system

 hostname host name

 inode i-node

 lowercase lower case, lower-case

 nonzero non-zero

 pathname path name

 pseudoterminal pseudo-terminal

 privileged port reserved port, system

 port

 real-time realtime, real time

 run time runtime

 saved set-group-ID saved group ID, saved

 set-GID

 saved set-user-ID saved user ID, saved

 set-UID

 set-group-ID set-GID, setgid

 set-user-ID set-UID, setuid

 superuser super user, super-user

 superblock super block, super-

 block

 timestamp time stamp

 timezone time zone

 uppercase upper case, upper-case

 usable useable

 user space userspace

 username user name

 x86-64 x86_64 Except if referring

 to result of "un?

 ame -m" or similar

 zeros zeroes

 See also the discussion Hyphenation of attributive compounds below.

 Terms to avoid

 The following table lists some terms to avoid using in man pages, along Page 13/19

 with some suggested alternatives, mainly to ensure consistency across

 pages.

 Avoid Use instead Notes

 ??

 32bit 32-bit same for 8-bit,

 16-bit, etc.

 current process calling process A common mistake

 made by kernel pro?

 grammers when writ?

 ing man pages

 manpage man page, manual

 page

 minus infinity negative infinity

 non-root unprivileged user

 non-superuser unprivileged user

 nonprivileged unprivileged

 OS operating system

 plus infinity positive infinity

 pty pseudoterminal

 tty terminal

 Unices UNIX systems

 Unixes UNIX systems

 Trademarks

 Use the correct spelling and case for trademarks. The following is a

 list of the correct spellings of various relevant trademarks that are

 sometimes misspelled:

 DG/UX

 HP-UX

 UNIX

 UnixWare

 NULL, NUL, null pointer, and null character

 A null pointer is a pointer that points to nothing, and is normally in?

 dicated by the constant NULL. On the other hand, NUL is the null byte, Page 14/19

 a byte with the value 0, represented in C via the character constant

 '\0'.

 The preferred term for the pointer is "null pointer" or simply "NULL";

 avoid writing "NULL pointer".

 The preferred term for the byte is "null byte". Avoid writing "NUL",

 since it is too easily confused with "NULL". Avoid also the terms

 "zero byte" and "null character". The byte that terminates a C string

 should be described as "the terminating null byte"; strings may be de?

 scribed as "null-terminated", but avoid the use of "NUL-terminated".

 Hyperlinks

 For hyperlinks, use the .UR/.UE macro pair (see groff_man(7)). This

 produces proper hyperlinks that can be used in a web browser, when ren?

 dering a page with, say:

 BROWSER=firefox man -H pagename

 Use of e.g., i.e., etc., a.k.a., and similar

 In general, the use of abbreviations such as "e.g.", "i.e.", "etc.",

 "cf.", and "a.k.a." should be avoided, in favor of suitable full word?

 ings ("for example", "that is", "and so on", "compare to", "also known

 as").

 The only place where such abbreviations may be acceptable is in short

 parenthetical asides (e.g., like this one).

 Always include periods in such abbreviations, as shown here. In addi?

 tion, "e.g." and "i.e." should always be followed by a comma.

 Em-dashes

 The way to write an em-dash?the glyph that appears at either end of

 this subphrase?in *roff is with the macro "\(em". (On an ASCII termi?

 nal, an em-dash typically renders as two hyphens, but in other typo?

 graphical contexts it renders as a long dash.) Em-dashes should be

 written without surrounding spaces.

 Hyphenation of attributive compounds

 Compound terms should be hyphenated when used attributively (i.e., to

 qualify a following noun). Some examples:

 32-bit value Page 15/19

 command-line argument

 floating-point number

 run-time check

 user-space function

 wide-character string

 Hyphenation with multi, non, pre, re, sub, and so on

 The general tendency in modern English is not to hyphenate after pre?

 fixes such as "multi", "non", "pre", "re", "sub", and so on. Manual

 pages should generally follow this rule when these prefixes are used in

 natural English constructions with simple suffixes. The following list

 gives some examples of the preferred forms:

 interprocess

 multithreaded

 multiprocess

 nonblocking

 nondefault

 nonempty

 noninteractive

 nonnegative

 nonportable

 nonzero

 preallocated

 precreate

 prerecorded

 reestablished

 reinitialize

 rearm

 reread

 subcomponent

 subdirectory

 subsystem

 Hyphens should be retained when the prefixes are used in nonstandard

 English words, with trademarks, proper nouns, acronyms, or compound Page 16/19

 terms. Some examples:

 non-ASCII

 non-English

 non-NULL

 non-real-time

 Finally, note that "re-create" and "recreate" are two different verbs,

 and the former is probably what you want.

 Generating optimal glyphs

 Where a real minus character is required (e.g., for numbers such as -1,

 for man page cross references such as utf-8(7), or when writing options

 that have a leading dash, such as in ls -l), use the following form in

 the man page source:

 \-

 This guideline applies also to code examples.

 To produce unslanted single quotes that render well in ASCII, UTF-8,

 and PDF, use "\(aq" ("apostrophe quote"); for example

 \(aqC\(aq

 where C is the quoted character. This guideline applies also to char?

 acter constants used in code examples.

 Where a proper caret (^) that renders well in both a terminal and PDF

 is required, use "\(ha". This is especially necessary in code samples,

 to get a nicely rendered caret when rendering to PDF.

 Using a naked "~" character results in a poor rendering in PDF. In?

 stead use "\(ti". This is especially necessary in code samples, to get

 a nicely rendered tilde when rendering to PDF.

 Example programs and shell sessions

 Manual pages may include example programs demonstrating how to use a

 system call or library function. However, note the following:

 * Example programs should be written in C.

 * An example program is necessary and useful only if it demonstrates

 something beyond what can easily be provided in a textual descrip?

 tion of the interface. An example program that does nothing other

 than call an interface usually serves little purpose. Page 17/19

 * Example programs should ideally be short (e.g., a good example can

 often be provided in less than 100 lines of code), though in some

 cases longer programs may be necessary to properly illustrate the

 use of an API.

 * Expressive code and useful comments are appreciated.

 * Example programs should do error checking after system calls and li?

 brary function calls.

 * Example programs should be complete, and compile without warnings

 when compiled with cc -Wall.

 * Where possible and appropriate, example programs should allow exper?

 imentation, by varying their behavior based on inputs (ideally from

 command-line arguments, or alternatively, via input read by the pro?

 gram).

 * Example programs should be laid out according to Kernighan and

 Ritchie style, with 4-space indents. (Avoid the use of TAB charac?

 ters in source code!) The following command can be used to format

 your source code to something close to the preferred style:

 indent -npro -kr -i4 -ts4 -sob -l72 -ss -nut -psl prog.c

 * For consistency, all example programs should terminate using either

 of:

 exit(EXIT_SUCCESS);

 exit(EXIT_FAILURE);

 Avoid using the following forms to terminate a program:

 exit(0);

 exit(1);

 return n;

 * If there is extensive explanatory text before the program source

 code, mark off the source code with a subsection heading Program

 source, as in:

 .SS Program source

 Always do this if the explanatory text includes a shell session log.

 If you include a shell session log demonstrating the use of a program

 or other system feature: Page 18/19

 * Place the session log above the source code listing

 * Indent the session log by four spaces.

 * Boldface the user input text, to distinguish it from output produced

 by the system.

 For some examples of what example programs should look like, see

 wait(2) and pipe(2).

EXAMPLES

 For canonical examples of how man pages in the man-pages package should

 look, see pipe(2) and fcntl(2).

SEE ALSO

 man(1), man2html(1), attributes(7), groff(7), groff_man(7), man(7),

 mdoc(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-08-13 MAN-PAGES(7)

Page 19/19

