r“‘ ,

University

FPDF Library

RedHat
Enterprise Linux

PDF generator
i,

Manual Pages

Full credit is given to the above companies including the 0S
that this PDF file was generated!

Red Hat Enterprise Linux Release 9.2 Manual Pages on 'man-pages.7' command

$ man man-pages.7

MAN-PAGES(7) Linux Programmer's Manual MAN-PAGES(7)
NAME
man-pages - conventions for writing Linux man pages
SYNOPSIS
man [section] title
DESCRIPTION
This page describes the conventions that should be employed when writ?
ing man pages for the Linux man-pages project, which documents the
user-space API provided by the Linux kernel and the GNU C library. The
project thus provides most of the pages in Section 2, many of the pages
that appear in Sections 3, 4, and 7, and a few of the pages that appear
in Sections 1, 5, and 8 of the man pages on a Linux system. The con?
ventions described on this page may also be useful for authors writing
man pages for other projects.
Sections of the manual pages
The manual Sections are traditionally defined as follows:
1 User commands (Programs)
Commands that can be executed by the user from within a shell.
2 System calls
Functions which wrap operations performed by the kernel.
3 Library calls
All library functions excluding the system call wrappers (Most

of the libc functions). Page 1/19

4 Special files (devices)
Files found in /dev which allow to access to devices through the
kernel.

5 File formats and configuration files
Describes various human-readable file formats and configuration
files.

6 Games
Games and funny little programs available on the system.

7 Overview, conventions, and miscellaneous
Overviews or descriptions of various topics, conventions and
protocols, character set standards, the standard filesystem lay?
out, and miscellaneous other things.

8 System management commands

Commands like mount(8), many of which only root can execute.

Macro package

New manual pages should be marked up using the groff an.tmac package

described in man(7). This choice is mainly for consistency: the vast
majority of existing Linux manual pages are marked up using these

macros.

Conventions for source file layout

Please limit source code line length to no more than about 75 charac?
ters wherever possible. This helps avoid line-wrapping in some mail

clients when patches are submitted inline.

Title line

The first command in a man page should be a TH command:
.TH title section date source manual

The arguments of the command are as follows:

titte The title of the man page, written in all caps (e.g., MAN-
PAGES).

section
The section number in which the man page should be placed (e.g.,
7).

date The date of the last nontrivial change that was made to the man

Page 2/19

page. (Within the man-pages project, the necessary updates to

these timestamps are handled automatically by scripts, so there

is no need to manually update them as part of a patch.) Dates

should be written in the form YYYY-MM-DD.

source The source of the command, function, or system call.

For those few man-pages pages in Sections 1 and 8, probably you

just want to write GNU.

For system calls, just write Linux. (An earlier practice was to

write the version number of the kernel from which the manual

page was being written/checked. However, this was never done

consistently, and so was probably worse than including no ver?

sion number. Henceforth, avoid including a version number.)

For library calls that are part of glibc or one of the other

common GNU libraries, just use GNU C Library, GNU, or an empty

string.
For Section 4 pages, use Linux.

In cases of doubt, just write Linux, or GNU.

manual The title of the manual (e.g., for Section 2 and 3 pages in the

man-pages package, use Linux Programmer's Manual).

Sections within a manual page

The list below shows conventional or suggested sections.

Most manual

pages should include at least the highlighted sections. Arrange a new

manual page so that sections are placed in the order shown in the list.

NAME

SYNOPSIS

CONFIGURATION [Normally only in Section 4]

DESCRIPTION

OPTIONS [Normally only in Sections 1, 8]
EXIT STATUS [Normally only in Sections 1, 8]
RETURN VALUE [Normally only in Sections 2, 3]

ERRORS [Typically only in Sections 2, 3]

ENVIRONMENT

FILES

Page 3/19

VERSIONS [Normally only in Sections 2, 3]
ATTRIBUTES [Normally only in Sections 2, 3]
CONFORMING TO
NOTES
BUGS
EXAMPLES
AUTHORS [Discouraged]
REPORTING BUGS [Not used in man-pages]
COPYRIGHT [Not used in man-pages]
SEE ALSO
Where a traditional heading would apply, please use it; this kind of
consistency can make the information easier to understand. If you
must, you can create your own headings if they make things easier to
understand (this can be especially useful for pages in Sections 4 and
5). However, before doing this, consider whether you could use the
traditional headings, with some subsections (.SS) within those sec?
tions.
The following list elaborates on the contents of each of the above sec?
tions.
NAME The name of this manual page.
See man(7) for important details of the line(s) that should fol?
low the .SH NAME command. All words in this line (including the
word immediately following the "\-") should be in lowercase, ex?
cept where English or technical terminological convention dic?
tates otherwise.
SYNOPSIS
A brief summary of the command or function's interface.
For commands, this shows the syntax of the command and its argu?
ments (including options); boldface is used for as-is text and
italics are used to indicate replaceable arguments. Brackets
(D) surround optional arguments, vertical bars (|) separate
choices, and ellipses (...) can be repeated. For functions, it

shows any required data declarations or #include directives,

Page 4/19

followed by the function declaration.
Where a feature test macro must be defined in order to obtain
the declaration of a function (or a variable) from a header
file, then the SYNOPSIS should indicate this, as described in
feature_test_macros(7).
CONFIGURATION
Configuration details for a device.
This section normally appears only in Section 4 pages.
DESCRIPTION
An explanation of what the program, function, or format does.
Discuss how it interacts with files and standard input, and what
it produces on standard output or standard error. Omit inter?
nals and implementation details unless they're critical for un?
derstanding the interface. Describe the usual case; for infor?
mation on command-line options of a program use the OPTIONS sec?
tion.
When describing new behavior or new flags for a system call or
library function, be careful to note the kernel or C library
version that introduced the change. The preferred method of
noting this information for flags is as part of a .TP list, in
the following form (here, for a new system call flag):
XYZ_FLAG (since Linux 3.7)
Description of flag...
Including version information is especially useful to users who
are constrained to using older kernel or C library versions
(which is typical in embedded systems, for example).
OPTIONS
A description of the command-line options accepted by a program
and how they change its behavior.
This section should appear only for Section 1 and 8 manual
pages.
EXIT STATUS

A list of the possible exit status values of a program and the Page 5/19

conditions that cause these values to be returned.
This section should appear only for Section 1 and 8 manual
pages.

RETURN VALUE
For Section 2 and 3 pages, this section gives a list of the val?
ues the library routine will return to the caller and the condi?
tions that cause these values to be returned.

ERRORS For Section 2 and 3 manual pages, this is a list of the values
that may be placed in errno in the event of an error, along with
information about the cause of the errors.

Where several different conditions produce the same error, the
preferred approach is to create separate list entries (with du?
plicate error names) for each of the conditions. This makes the
separate conditions clear, may make the list easier to read, and
allows metainformation (e.g., kernel version number where the
condition first became applicable) to be more easily marked for
each condition.

The error list should be in alphabetical order.

ENVIRONMENT
A list of all environment variables that affect the program or
function and how they affect it.

FILES A list of the files the program or function uses, such as con?
figuration files, startup files, and files the program directly
operates on.

Give the full pathname of these files, and use the installation
process to modify the directory part to match user preferences.
For many programs, the default installation location is in
/usr/local, so your base manual page should use /usr/local as
the base.

ATTRIBUTES
A summary of various attributes of the function(s) documented on
this page. See attributes(7) for further details.

VERSIONS Page 6/19

A brief summary of the Linux kernel or glibc versions where a
system call or library function appeared, or changed signifi?
cantly in its operation.
As a general rule, every new interface should include a VERSIONS
section in its manual page. Unfortunately, many existing manual
pages don'tinclude this information (since there was no policy
to do so when they were written). Patches to remedy this are
welcome, but, from the perspective of programmers writing new
code, this information probably matters only in the case of ker?
nel interfaces that have been added in Linux 2.4 or later (i.e.,
changes since kernel 2.2), and library functions that have been
added to glibc since version 2.1 (i.e., changes since glibc
2.0).
The syscalls(2) manual page also provides information about ker?
nel versions in which various system calls first appeared.
CONFORMING TO
A description of any standards or conventions that relate to the
function or command described by the manual page.
The preferred terms to use for the various standards are listed
as headings in standards(7).
For a page in Section 2 or 3, this section should note the
POSIX.1 version(s) that the call conforms to, and also whether
the call is specified in C99. (Don't worry too much about other
standards like SUS, SUSv2, and XPG, or the SVr4 and 4.xBSD im?
plementation standards, unless the call was specified in those
standards, but isn't in the current version of POSIX.1.)
If the call is not governed by any standards but commonly exists
on other systems, note them. If the call is Linux-specific,
note this.
If this section consists of just a list of standards (which it
commonly does), terminate the list with a period ('.").
NOTES Miscellaneous notes.

For Section 2 and 3 man pages you may find it useful to include Page 7/19

subsections (SS) named Linux Notes and Glibc Notes.
In Section 2, use the heading C library/kernel differences to
mark off notes that describe the differences (if any) between
the C library wrapper function for a system call and the raw
system call interface provided by the kernel.

BUGS A list of limitations, known defects or inconveniences, and
other questionable activities.

EXAMPLES
One or more examples demonstrating how this function, file or
command is used.
For details on writing example programs, see Example programs
below.

AUTHORS
A list of authors of the documentation or program.
Use of an AUTHORS section is strongly discouraged. Generally,
it is better not to clutter every page with a list of (over time
potentially numerous) authors; if you write or significantly
amend a page, add a copyright notice as a comment in the source
file. If you are the author of a device driver and want to in?
clude an address for reporting bugs, place this under the BUGS
section.

REPORTING BUGS
The man-pages project doesn't use a REPORTING BUGS section in
manual pages. Information on reporting bugs is instead supplied
in the script-generated COLOPHON section. However, various
projects do use a REPORTING BUGS section. it is recommended to
place it near the foot of the page.

COPYRIGHT
The man-pages project doesn't use a COPYRIGHT section in manual
pages. Copyright information is instead maintained in the page
source. In pages where this section is present, it is recom?
mended to place it near the foot of the page, just above SEE

ALSO. Page 8/19

SEE ALSO
A comma-separated list of related man pages, possibly followed
by other related pages or documents.
The list should be ordered by section number and then alphabeti?
cally by name. Do not terminate this list with a period.
Where the SEE ALSO list contains many long manual page names, to
improve the visual result of the output, it may be useful to em?
ploy the .ad | (don't right justify) and .nh (don't hyphenate)
directives. Hyphenation of individual page names can be pre?
vented by preceding words with the string "\%".
Given the distributed, autonomous nature of FOSS projects and
their documentation, it is sometimes necessary?and in many cases
desirable?that the SEE ALSO section includes references to man?
ual pages provided by other projects.
STYLE GUIDE
The following subsections describe the preferred style for the man-
pages project. For details not covered below, the Chicago Manual of
Style is usually a good source; try also grepping for preexisting usage
in the project source tree.
Use of gender-neutral language
As far as possible, use gender-neutral language in the text of man
pages. Use of "they" ("them", "themself", "their") as a gender-neutral
singular pronoun is acceptable.
Formatting conventions for manual pages describing commands
For manual pages that describe a command (typically in Sections 1 and
8), the arguments are always specified using italics, even in the SYN?
OPSIS section.
The name of the command, and its options, should always be formatted in
bold.
Formatting conventions for manual pages describing functions
For manual pages that describe functions (typically in Sections 2 and
3), the arguments are always specified using italics, even in the SYN?

OPSIS section, where the rest of the function is specified in bold: Page 9/19

int myfunction(int argc, char **argv);
Variable names should, like argument names, be specified in italics.
Any reference to the subject of the current manual page should be writ?
ten with the name in bold followed by a pair of parentheses in Roman
(normal) font. For example, in the fcntl(2) man page, references to
the subject of the page would be written as: fcntl(). The preferred
way to write this in the source file is:
.BR fentl ()

(Using this format, rather than the use of "\fB...\fP()" makes it eas?
ier to write tools that parse man page source files.)

Use semantic newlines
In the source of a manual page, new sentences should be started on new
lines, and long sentences should splitinto lines at clause breaks
(commas, semicolons, colons, and so on). This convention, sometimes
known as "semantic newlines", makes it easier to see the effect of
patches, which often operate at the level of individual sentences or
sentence clauses.

Formatting conventions (general)
Paragraphs should be separated by suitable markers (usually either .PP
or .IP). Do not separate paragraphs using blank lines, as this results
in poor rendering in some output formats (such as PostScript and PDF).
Filenames (whether pathnames, or references to header files) are always
in italics (e.g., <stdio.h>), except in the SYNOPSIS section, where in?
cluded files are in bold (e.g., #include <stdio.h>). When referring to
a standard header file include, specify the header file surrounded by
angle brackets, in the usual C way (e.g., <stdio.h>).
Special macros, which are usually in uppercase, are in bold (e.g., MAX?
INT). Exception: don't boldface NULL.
When enumerating a list of error codes, the codes are in bold (this
list usually uses the .TP macro).
Complete commands should, if long, be written as an indented line on
their own, with a blank line before and after the command, for example

man 7 man-pages Page 10/19

If the command is short, then it can be included inline in the text, in

italic format, for example, man 7 man-pages. In this case, it may be

worth using nonbreaking spaces ("\) at suitable places in the com?

mand. Command options should be written in italics (e.g., -I).

Expressions, if not written on a separate indented line, should be

specified in italics. Again, the use of nonbreaking spaces may be ap?

propriate if the expression is inlined with normal text.

When showing example shell sessions, user input should be formatted in

bold, for example
$ date
Thu Jul 7 13:01:27 CEST 2016

Any reference to another man page should be written with the name in

bold, always followed by the section number, formatted in Roman (nor?

mal) font, without any separating spaces (e.g., intro(2)). The pre?
ferred way to write this in the source file is:
.BRintro (2)

(Including the section number in cross references lets tools like

man2html(1) create properly hyperlinked pages.)

Control characters should be written in bold face, with no quotes; for

example, "X.

Spelling

Starting with release 2.59, man-pages follows American spelling conven?

tions (previously, there was a random mix of British and American

spellings); please write all new pages and patches according to these
conventions.

Aside from the well-known spelling differences, there are a few other

subtleties to watch for:

* American English tends to use the forms "backward", "upward", "to?
ward", and so on rather than the British forms "backwards", "up?
wards", "towards", and so on.

BSD version numbers
The classical scheme for writing BSD version numbers is x.yBSD, where

X.y is the version number (e.g., 4.2BSD). Avoid forms such as BSD 4.3. Page 11/19

Capitalization
In subsection ("SS") headings, capitalize the first word in the head?
ing, but otherwise use lowercase, except where English usage (e.g.,
proper nouns) or programming language requirements (e.g., identifier
names) dictate otherwise. For example:
.SS Unicode under Linux
Indentation of structure definitions, shell session logs, and so on
When structure definitions, shell session logs, and so on are included
in running text, indent them by 4 spaces (i.e., a block enclosed by
.in +4n and .in), format them using the .EX and EE macros, and surround
them with suitable paragraph markers (either .PP or .IP). For example:
.PP
.in +4n
EX
int
main(int argc, char *argv[])
{
return O;
}
.EE
.in
.PP
Preferred terms
The following table lists some preferred terms to use in man pages,
mainly to ensure consistency across pages.

Term Avoid using Notes

PPV 2??2??72??7?7??7???7????7??7?777

bit mask bitmask

built-in builtin

Epoch epoch For the UNIX Epoch
(00:00:00, 1 Jan
1970 UTC)

filename file name

Page 12/19

filesystem file system

hostname host name

inode i-node

lowercase lower case, lower-case
nonzero non-zero

pathname path name

pseudoterminal pseudo-terminal

privileged port reserved port, system

port
real-time realtime, real time
run time runtime

saved set-group-ID saved group ID, saved
set-GID

saved set-user-ID saved user ID, saved
set-UID

set-group-1D set-GID, setgid

set-user-1D set-UID, setuid

superuser super user, super-user

superblock super block, super-
block

timestamp time stamp

timezone time zone

uppercase upper case, upper-case

usable useable

user space userspace

username user name

x86-64 x86_64 Except if referring

to result of "un?
ame -m" or similar
zeros zeroes
See also the discussion Hyphenation of attributive compounds below.
Terms to avoid

The following table lists some terms to avoid using in man pages, along Page 13/19

with some suggested alternatives, mainly to ensure consistency across
pages.
Avoid Use instead Notes

PPV 7??77??77?72?7?7277?7277?7?7??7??7?7??7?7

32bit 32-bit same for 8-bit,
16-bit, etc.

current process calling process A common mistake
made by kernel pro?
grammers when writ?
ing man pages

manpage man page, manual

page

minus infinity negative infinity

non-root unprivileged user

non-superuser unprivileged user

nonprivileged unprivileged

oS operating system

plus infinity ~ positive infinity

pty pseudoterminal

tty terminal

Unices UNIX systems

Unixes UNIX systems
Trademarks

Use the correct spelling and case for trademarks. The following is a
list of the correct spellings of various relevant trademarks that are
sometimes misspelled:
DG/UX
HP-UX
UNIX
UnixWare
NULL, NUL, null pointer, and null character
A null pointer is a pointer that points to nothing, and is normally in?

dicated by the constant NULL. On the other hand, NUL is the null byte, Page 14/19

a byte with the value 0, represented in C via the character constant
\0'".
The preferred term for the pointer is "null pointer” or simply "NULL";
avoid writing "NULL pointer".
The preferred term for the byte is "null byte". Avoid writing "NUL",
since it is too easily confused with "NULL". Avoid also the terms
"zero byte" and "null character”. The byte that terminates a C string
should be described as "the terminating null byte"; strings may be de?
scribed as "null-terminated”, but avoid the use of "NUL-terminated".
Hyperlinks
For hyperlinks, use the .UR/.UE macro pair (see groff_man(7)). This
produces proper hyperlinks that can be used in a web browser, when ren?
dering a page with, say:
BROWSER=firefox man -H pagename
Use of e.g., i.e., etc., a.k.a., and similar
In general, the use of abbreviations such as "e.g.", "i.e.", "etc.",

cf.", and "a.k.a." should be avoided, in favor of suitable full word?

ings (“for example", "that is", "and so on", "compare to", "also known
as").
The only place where such abbreviations may be acceptable is in short
parenthetical asides (e.g., like this one).
Always include periods in such abbreviations, as shown here. In addi?
tion, "e.g." and "i.e." should always be followed by a comma.
Em-dashes
The way to write an em-dash?the glyph that appears at either end of
this subphrase?in *roff is with the macro "\(em". (On an ASCIl termi?
nal, an em-dash typically renders as two hyphens, but in other typo?
graphical contexts it renders as a long dash.) Em-dashes should be
written without surrounding spaces.
Hyphenation of attributive compounds
Compound terms should be hyphenated when used attributively (i.e., to

qualify a following noun). Some examples:

32-bit value Page 15/19

command-line argument
floating-point number
run-time check
user-space function
wide-character string
Hyphenation with multi, non, pre, re, sub, and so on
The general tendency in modern English is not to hyphenate after pre?

fixes such as "multi", "non", "pre", "re", "sub", and so on. Manual
pages should generally follow this rule when these prefixes are used in
natural English constructions with simple suffixes. The following list
gives some examples of the preferred forms:

interprocess

multithreaded

multiprocess

nonblocking

nondefault

nonempty

noninteractive

nonnegative

nonportable

nonzero

preallocated

precreate

prerecorded

reestablished

reinitialize

rearm

reread

subcomponent

subdirectory

subsystem
Hyphens should be retained when the prefixes are used in nonstandard

English words, with trademarks, proper nouns, acronyms, or compound

Page 16/19

terms. Some examples:
non-ASCI|
non-English
non-NULL
non-real-time
Finally, note that "re-create" and "recreate" are two different verbs,
and the former is probably what you want.
Generating optimal glyphs
Where a real minus character is required (e.g., for numbers such as -1,
for man page cross references such as utf-8(7), or when writing options
that have a leading dash, such as in Is -I), use the following form in
the man page source:
\-
This guideline applies also to code examples.
To produce unslanted single quotes that render well in ASCII, UTF-8,
and PDF, use "\(aq" ("apostrophe quote"); for example
\(aqC\(aq
where C is the quoted character. This guideline applies also to char?
acter constants used in code examples.
Where a proper caret (") that renders well in both a terminal and PDF
is required, use "\(ha". This is especially necessary in code samples,
to get a nicely rendered caret when rendering to PDF.
Using a naked "~" character results in a poor rendering in PDF. In?
stead use "\(ti". This is especially necessary in code samples, to get
a nicely rendered tilde when rendering to PDF.
Example programs and shell sessions
Manual pages may include example programs demonstrating how to use a
system call or library function. However, note the following:
* Example programs should be written in C.
* An example program is necessary and useful only if it demonstrates
something beyond what can easily be provided in a textual descrip?
tion of the interface. An example program that does nothing other

than call an interface usually serves little purpose. Page 17/19

* Example programs should ideally be short (e.g., a good example can
often be provided in less than 100 lines of code), though in some
cases longer programs may be necessary to properly illustrate the
use of an API.

* Expressive code and useful comments are appreciated.

* Example programs should do error checking after system calls and li?
brary function calls.

* Example programs should be complete, and compile without warnings
when compiled with cc -Wall.

* Where possible and appropriate, example programs should allow exper?
imentation, by varying their behavior based on inputs (ideally from
command-line arguments, or alternatively, via input read by the pro?
gram).

* Example programs should be laid out according to Kernighan and
Ritchie style, with 4-space indents. (Avoid the use of TAB charac?
ters in source code!) The following command can be used to format
your source code to something close to the preferred style:

indent -npro -kr -i4 -ts4 -sob -172 -ss -nut -psl prog.c
* For consistency, all example programs should terminate using either
of:
exit(EXIT_SUCCESS);
exit(EXIT_FAILURE);
Avoid using the following forms to terminate a program:
exit(0);
exit(1);
return n;

* |f there is extensive explanatory text before the program source
code, mark off the source code with a subsection heading Program
source, as in:

.SS Program source
Always do this if the explanatory text includes a shell session log.
If you include a shell session log demonstrating the use of a program

or other system feature: Page 18/19

* Place the session log above the source code listing
* Indent the session log by four spaces.
* Boldface the user input text, to distinguish it from output produced
by the system.

For some examples of what example programs should look like, see
wait(2) and pipe(2).

EXAMPLES
For canonical examples of how man pages in the man-pages package should
look, see pipe(2) and fcntl(2).

SEE ALSO
man(1), man2htmi(1), attributes(7), groff(7), groff_man(7), man(7),
mdoc(7)

COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A
description of the project, information about reporting bugs, and the
latest version of this page, can be found at
https://lwww.kernel.org/doc/man-pages/.

Linux 2020-08-13 MAN-PAGES(7)

Page 19/19

