
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'math_error.7' command

$ man math_error.7

MATH_ERROR(7) Linux Programmer's Manual MATH_ERROR(7)

NAME

 math_error - detecting errors from mathematical functions

SYNOPSIS

 #include <math.h>

 #include <errno.h>

 #include <fenv.h>

DESCRIPTION

 When an error occurs, most library functions indicate this fact by re?

 turning a special value (e.g., -1 or NULL). Because they typically re?

 turn a floating-point number, the mathematical functions declared in

 <math.h> indicate an error using other mechanisms. There are two er?

 ror-reporting mechanisms: the older one sets errno; the newer one uses

 the floating-point exception mechanism (the use of feclearexcept(3) and

 fetestexcept(3), as outlined below) described in fenv(3).

 A portable program that needs to check for an error from a mathematical

 function should set errno to zero, and make the following call

 feclearexcept(FE_ALL_EXCEPT);

 before calling a mathematical function.

 Upon return from the mathematical function, if errno is nonzero, or the

 following call (see fenv(3)) returns nonzero

 fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW |

 FE_UNDERFLOW); Page 1/4

 then an error occurred in the mathematical function.

 The error conditions that can occur for mathematical functions are de?

 scribed below.

 Domain error

 A domain error occurs when a mathematical function is supplied with an

 argument whose value falls outside the domain for which the function is

 defined (e.g., giving a negative argument to log(3)). When a domain

 error occurs, math functions commonly return a NaN (though some func?

 tions return a different value in this case); errno is set to EDOM, and

 an "invalid" (FE_INVALID) floating-point exception is raised.

 Pole error

 A pole error occurs when the mathematical result of a function is an

 exact infinity (e.g., the logarithm of 0 is negative infinity). When a

 pole error occurs, the function returns the (signed) value HUGE_VAL,

 HUGE_VALF, or HUGE_VALL, depending on whether the function result type

 is double, float, or long double. The sign of the result is that which

 is mathematically correct for the function. errno is set to ERANGE,

 and a "divide-by-zero" (FE_DIVBYZERO) floating-point exception is

 raised.

 Range error

 A range error occurs when the magnitude of the function result means

 that it cannot be represented in the result type of the function. The

 return value of the function depends on whether the range error was an

 overflow or an underflow.

 A floating result overflows if the result is finite, but is too large

 to represented in the result type. When an overflow occurs, the func?

 tion returns the value HUGE_VAL, HUGE_VALF, or HUGE_VALL, depending on

 whether the function result type is double, float, or long double. er?

 rno is set to ERANGE, and an "overflow" (FE_OVERFLOW) floating-point

 exception is raised.

 A floating result underflows if the result is too small to be repre?

 sented in the result type. If an underflow occurs, a mathematical

 function typically returns 0.0 (C99 says a function shall return "an Page 2/4

 implementation-defined value whose magnitude is no greater than the

 smallest normalized positive number in the specified type"). errno may

 be set to ERANGE, and an "underflow" (FE_UNDERFLOW) floating-point ex?

 ception may be raised.

 Some functions deliver a range error if the supplied argument value, or

 the correct function result, would be subnormal. A subnormal value is

 one that is nonzero, but with a magnitude that is so small that it

 can't be presented in normalized form (i.e., with a 1 in the most sig?

 nificant bit of the significand). The representation of a subnormal

 number will contain one or more leading zeros in the significand.

NOTES

 The math_errhandling identifier specified by C99 and POSIX.1 is not

 supported by glibc. This identifier is supposed to indicate which of

 the two error-notification mechanisms (errno, exceptions retrievable

 via fetestexcept(3)) is in use. The standards require that at least

 one be in use, but permit both to be available. The current (version

 2.8) situation under glibc is messy. Most (but not all) functions

 raise exceptions on errors. Some also set errno. A few functions set

 errno, but don't raise an exception. A very few functions do neither.

 See the individual manual pages for details.

 To avoid the complexities of using errno and fetestexcept(3) for error

 checking, it is often advised that one should instead check for bad ar?

 gument values before each call. For example, the following code en?

 sures that log(3)'s argument is not a NaN and is not zero (a pole er?

 ror) or less than zero (a domain error):

 double x, r;

 if (isnan(x) || islessequal(x, 0)) {

 /* Deal with NaN / pole error / domain error */

 }

 r = log(x);

 The discussion on this page does not apply to the complex mathematical

 functions (i.e., those declared by <complex.h>), which in general are

 not required to return errors by C99 and POSIX.1. Page 3/4

 The gcc(1) -fno-math-errno option causes the executable to employ im?

 plementations of some mathematical functions that are faster than the

 standard implementations, but do not set errno on error. (The gcc(1)

 -ffast-math option also enables -fno-math-errno.) An error can still

 be tested for using fetestexcept(3).

SEE ALSO

 gcc(1), errno(3), fenv(3), fpclassify(3), INFINITY(3), isgreater(3),

 matherr(3), nan(3)

 info libc

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 MATH_ERROR(7)

Page 4/4

