r“‘ ,

University

FPDF Library

PDF generator

RedHat
Enterprise Linux

A

Manual Pages

Full credit is given to the above companies including the 0S
that this PDF file was generated!

Red Hat Enterprise Linux Release 9.2 Manual Pages on 'mq_overview.7' command
$ man mqg_overview.7
MQ_OVERVIEW(7) Linux Programmer's Manual MQ_OVERVIEW(7)
NAME
mq_overview - overview of POSIX message queues
DESCRIPTION
POSIX message queues allow processes to exchange data in the form of
messages. This API is distinct from that provided by System V message
queues (msgget(2), msgsnd(2), msgrcv(2), etc.), but provides similar
functionality.
Message queues are created and opened using mg_open(3); this function
returns a message queue descriptor (mqd_t), which is used to refer to
the open message queue in later calls. Each message queue is identi?
fied by a name of the form /somename; that is, a null-terminated string
of up to NAME_MAX (i.e., 255) characters consisting of an initial
slash, followed by one or more characters, none of which are slashes.
Two processes can operate on the same queue by passing the same name to
mqg_open(3).
Messages are transferred to and from a queue using mqg_send(3) and
mq_receive(3). When a process has finished using the queue, it closes
it using mq_close(3), and when the queue is no longer required, it can
be deleted using mg_unlink(3). Queue attributes can be retrieved and
(in some cases) modified using mq_getattr(3) and mq_setattr(3). A
process can request asynchronous notification of the arrival of a mes?

sage on a previously empty queue using mg_notify(3). Page 1/7

A message queue descriptor is a reference to an open message queue de?
scription (see open(2)). After a fork(2), a child inherits copies of
its parent's message queue descriptors, and these descriptors refer to
the same open message queue descriptions as the corresponding message
gueue descriptors in the parent. Corresponding message queue descrip?
tors in the two processes share the flags (mq_flags) that are associ?
ated with the open message queue description.
Each message has an associated priority, and messages are always deliv?
ered to the receiving process highest priority first. Message priori?
ties range from 0 (low) to sysconf(_SC_MQ_PRIO_MAX) - 1 (high). On
Linux, sysconf(_ SC_MQ_PRIO_MAX) returns 32768, but POSIX.1 requires
only that an implementation support at least priorities in the range 0
to 31; some implementations provide only this range.
The remainder of this section describes some specific details of the
Linux implementation of POSIX message queues.
Library interfaces and system calls

In most cases the mq_*() library interfaces listed above are imple?
mented on top of underlying system calls of the same name. Deviations
from this scheme are indicated in the following table:

Library interface System call

mq_close(3) close(2)

ma_getattr(3) mq_getsetattr(2)

mq_notify(3) mq_notify(2)

mq_open(3) ma_open(2)
mq_receive(3) mq_timedreceive(2)
mqg_send(3) mq_timedsend(2)

mq_setattr(3) mq_getsetattr(2)
mq_timedreceive(3) mq_timedreceive(2)
mq_timedsend(3) mqg_timedsend(2)
mq_unlink(3) mq_unlink(2)
Versions
POSIX message queues have been supported on Linux since kernel 2.6.6.

Glibc support has been provided since version 2.3.4. Page 2/7

Kernel configuration
Support for POSIX message queues is configurable via the CON?
FIG_POSIX_MQUEUE kernel configuration option. This option is enabled
by default.
Persistence
POSIX message queues have kernel persistence: if not removed by mqg_un?
link(3), a message queue will exist until the system is shut down.
Linking
Programs using the POSIX message queue APl must be compiled with cc
-Irt to link against the real-time library, librt.
/proc interfaces
The following interfaces can be used to limit the amount of kernel mem?
ory consumed by POSIX message queues and to set the default attributes
for new message queues:
/proc/sys/fs/imqueue/msg_default (since Linux 3.5)
This file defines the value used for a new queue's mq_maxmsg
setting when the queue is created with a call to mg_open(3)
where attr is specified as NULL. The default value for this
fle is 10. The minimum and maximum are as for
/proc/sys/fsimqueue/msg_max. A new queue's default mg_maxmsg
value will be the smaller of msg_default and msg_max. Up until
Linux 2.6.28, the default mgq_maxmsg was 10; from Linux 2.6.28 to
Linux 3.4, the default was the value defined for the msg_max
limit.
/proc/sys/fs/imqueue/msg_max
This file can be used to view and change the ceiling value for
the maximum number of messages in a queue. This value acts as a
ceiling on the attr->mqg_maxmsg argument given to mq_open(3).
The default value for msg_max is 10. The minimum value is 1 (10
in kernels before 2.6.28). The upper limit is HARD_MSGMAX. The
msg_max limit is ignored for privileged processes (CAP_SYS RE?
SOURCE), but the HARD_MSGMAX ceiling is nevertheless imposed.

The definition of HARD_MSGMAX has changed across kernel ver?

Page 3/7

sions:
* Up to Linux 2.6.32: 131072 / sizeof(void *)
* Linux 2.6.33 to 3.4: (32768 * sizeof(void *) / 4)
* Since Linux 3.5: 65,536
/proc/sys/fsimqueue/msgsize_default (since Linux 3.5)
This file defines the value used for a new queue's mq_msgsize
setting when the queue is created with a call to mq_open(3)
where attr is specified as NULL. The default value for this
file is 8192 (bytes). The minimum and maximum are as for
/proc/sys/fsimqueue/msgsize_max. If msgsize_default exceeds ms?
gsize_max, a new queue's default mg_msgsize value is capped to
the msgsize_max limit. Up until Linux 2.6.28, the default
mg_msgsize was 8192; from Linux 2.6.28 to Linux 3.4, the default
was the value defined for the msgsize_max limit.
/proc/sys/fs/imqueue/msgsize_max
This file can be used to view and change the ceiling on the max?
imum message size. This value acts as a ceiling on the
attr->mq_msgsize argument given to mq_open(3). The default
value for msgsize_max is 8192 bytes. The minimum value is 128
(8192 in kernels before 2.6.28). The upper limit for msg?
size_max has varied across kernel versions:
* Before Linux 2.6.28, the upper limit is INT_MAX.
* From Linux 2.6.28 to 3.4, the limit is 1,048,576.
* Since Linux 3.5, the limit is 16,777,216 (HARD_MSGSIZEMAX).
The msgsize_max limit is ignored for privileged process
(CAP_SYS_RESOURCE), but, since Linux 3.5, the HARD_MSGSIZEMAX
ceiling is enforced for privileged processes.
/proc/sys/fsimqueue/queues_max
This file can be used to view and change the system-wide limit
on the number of message queues that can be created. The de?
fault value for queues_max is 256. No ceiling is imposed on the
queues_max limit; privileged processes (CAP_SYS RESOURCE) can

exceed the limit (but see BUGS). Page 4/7

Resource limit
The RLIMIT_MSGQUEUE resource limit, which places a limit on the amount
of space that can be consumed by all of the message queues belonging to
a process's real user ID, is described in getrlimit(2).
Mounting the message queue filesystem
On Linux, message queues are created in a virtual filesystem. (Other
implementations may also provide such a feature, but the details are
likely to differ.) This filesystem can be mounted (by the superuser)
using the following commands:
mkdir /dev/imqueue
mount -t mqueue none /dev/mqueue
The sticky bit is automatically enabled on the mount directory.
After the filesystem has been mounted, the message queues on the system
can be viewed and manipulated using the commands usually used for files
(e.g., Is(1) and rm(2)).
The contents of each file in the directory consist of a single line
containing information about the queue:
$ cat /dev/mqueue/mymq
QSIZE:129 NOTIFY:2 SIGNO:0 NOTIFY_PID:8260
These fields are as follows:
QSIZE Number of bytes of data in all messages in the queue (but see
BUGS).
NOTIFY_PID
If this is nonzero, then the process with this PID has used
mq_notify(3) to register for asynchronous message notification,
and the remaining fields describe how notification occurs.
NOTIFY Notification method: 0 is SIGEV_SIGNAL; 1 is SIGEV_NONE; and 2
is SIGEV_THREAD.
SIGNO Signal number to be used for SIGEV_SIGNAL.
Linux implementation of message queue descriptors
On Linux, a message queue descriptor is actually a file descriptor.
(POSIX does not require such an implementation.) This means that a

message queue descriptor can be monitored using select(2), poll(2), or Page 5/7

epoll(7). This is not portable.
The close-on-exec flag (see open(2)) is automatically set on the file
descriptor returned by mq_open(2).
IPC namespaces

For a discussion of the interaction of POSIX message queue objects and
IPC namespaces, see ipc_namespaces(7).

NOTES
System V message queues (msgget(2), msgsnd(2), msgrcv(2), etc.) are an
older API for exchanging messages between processes. POSIX message
queues provide a better designed interface than System V message
gueues; on the other hand POSIX message queues are less widely avail?
able (especially on older systems) than System V message queues.
Linux does not currently (2.6.26) support the use of access control
lists (ACLSs) for POSIX message queues.

BUGS
In Linux versions 3.5 to 3.14, the kernel imposed a ceiling of 1024
(HARD_QUEUESMAX) on the value to which the queues_max limit could be
raised, and the ceiling was enforced even for privileged processes.
This ceiling value was removed in Linux 3.14, and patches to stable
kernels 3.5.x to 3.13.x also removed the ceiling.
As originally implemented (and documented), the QSIZE field displayed
the total number of (user-supplied) bytes in all messages in the mes?
sage queue. Some changes in Linux 3.5 inadvertently changed the behav?
ior, so that this field also included a count of kernel overhead bytes
used to store the messages in the queue. This behavioral regression
was rectified in Linux 4.2 (and earlier stable kernel series), so that
the count once more included just the bytes of user data in messages in
the queue.

EXAMPLES
An example of the use of various message queue functions is shown in
mq_hotify(3).

SEE ALSO

getrlimit(2), mg_getsetattr(2), poll(2), select(2), mg_close(3), Page 6/7

mq_getattr(3), mqg_notify(3), mqg_open(3), mqg_receive(3), mq_send(3),
mq_unlink(3), epoll(7), namespaces(7)

COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A
description of the project, information about reporting bugs, and the
latest version of this page, can be found at
https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 MQ_OVERVIEW(7)

Page 7/7

