
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'netdevice.7' command

$ man netdevice.7

NETDEVICE(7) Linux Programmer's Manual NETDEVICE(7)

NAME

 netdevice - low-level access to Linux network devices

SYNOPSIS

 #include <sys/ioctl.h>

 #include <net/if.h>

DESCRIPTION

 This man page describes the sockets interface which is used to config?

 ure network devices.

 Linux supports some standard ioctls to configure network devices. They

 can be used on any socket's file descriptor regardless of the family or

 type. Most of them pass an ifreq structure:

 struct ifreq {

 char ifr_name[IFNAMSIZ]; /* Interface name */

 union {

 struct sockaddr ifr_addr;

 struct sockaddr ifr_dstaddr;

 struct sockaddr ifr_broadaddr;

 struct sockaddr ifr_netmask;

 struct sockaddr ifr_hwaddr;

 short ifr_flags;

 int ifr_ifindex;

 int ifr_metric; Page 1/7

 int ifr_mtu;

 struct ifmap ifr_map;

 char ifr_slave[IFNAMSIZ];

 char ifr_newname[IFNAMSIZ];

 char *ifr_data;

 };

 };

 Normally, the user specifies which device to affect by setting ifr_name

 to the name of the interface. All other members of the structure may

 share memory.

 Ioctls

 If an ioctl is marked as privileged, then using it requires an effec?

 tive user ID of 0 or the CAP_NET_ADMIN capability. If this is not the

 case, EPERM will be returned.

 SIOCGIFNAME

 Given the ifr_ifindex, return the name of the interface in

 ifr_name. This is the only ioctl which returns its result in

 ifr_name.

 SIOCGIFINDEX

 Retrieve the interface index of the interface into ifr_ifindex.

 SIOCGIFFLAGS, SIOCSIFFLAGS

 Get or set the active flag word of the device. ifr_flags con?

 tains a bit mask of the following values:

 Device flags

 IFF_UP Interface is running.

 IFF_BROADCAST Valid broadcast address set.

 IFF_DEBUG Internal debugging flag.

 IFF_LOOPBACK Interface is a loopback interface.

 IFF_POINTOPOINT Interface is a point-to-point link.

 IFF_RUNNING Resources allocated.

 IFF_NOARP No arp protocol, L2 destination address not

 set.

 IFF_PROMISC Interface is in promiscuous mode. Page 2/7

 IFF_NOTRAILERS Avoid use of trailers.

 IFF_ALLMULTI Receive all multicast packets.

 IFF_MASTER Master of a load balancing bundle.

 IFF_SLAVE Slave of a load balancing bundle.

 IFF_MULTICAST Supports multicast

 IFF_PORTSEL Is able to select media type via ifmap.

 IFF_AUTOMEDIA Auto media selection active.

 IFF_DYNAMIC The addresses are lost when the interface

 goes down.

 IFF_LOWER_UP Driver signals L1 up (since Linux 2.6.17)

 IFF_DORMANT Driver signals dormant (since Linux 2.6.17)

 IFF_ECHO Echo sent packets (since Linux 2.6.25)

 Setting the active flag word is a privileged operation, but any process

 may read it.

 SIOCGIFPFLAGS, SIOCSIFPFLAGS

 Get or set extended (private) flags for the device. ifr_flags

 contains a bit mask of the following values:

 Private flags

 IFF_802_1Q_VLAN Interface is 802.1Q VLAN device.

 IFF_EBRIDGE Interface is Ethernet bridging device.

 IFF_SLAVE_INACTIVE Interface is inactive bonding slave.

 IFF_MASTER_8023AD Interface is 802.3ad bonding master.

 IFF_MASTER_ALB Interface is balanced-alb bonding master.

 IFF_BONDING Interface is a bonding master or slave.

 IFF_SLAVE_NEEDARP Interface needs ARPs for validation.

 IFF_ISATAP Interface is RFC4214 ISATAP interface.

 Setting the extended (private) interface flags is a privileged opera?

 tion.

 SIOCGIFADDR, SIOCSIFADDR

 Get or set the address of the device using ifr_addr. Setting

 the interface address is a privileged operation. For compati?

 bility, only AF_INET addresses are accepted or returned.

 SIOCGIFDSTADDR, SIOCSIFDSTADDR Page 3/7

 Get or set the destination address of a point-to-point device

 using ifr_dstaddr. For compatibility, only AF_INET addresses

 are accepted or returned. Setting the destination address is a

 privileged operation.

 SIOCGIFBRDADDR, SIOCSIFBRDADDR

 Get or set the broadcast address for a device using ifr_brdaddr.

 For compatibility, only AF_INET addresses are accepted or re?

 turned. Setting the broadcast address is a privileged opera?

 tion.

 SIOCGIFNETMASK, SIOCSIFNETMASK

 Get or set the network mask for a device using ifr_netmask. For

 compatibility, only AF_INET addresses are accepted or returned.

 Setting the network mask is a privileged operation.

 SIOCGIFMETRIC, SIOCSIFMETRIC

 Get or set the metric of the device using ifr_metric. This is

 currently not implemented; it sets ifr_metric to 0 if you at?

 tempt to read it and returns EOPNOTSUPP if you attempt to set

 it.

 SIOCGIFMTU, SIOCSIFMTU

 Get or set the MTU (Maximum Transfer Unit) of a device using

 ifr_mtu. Setting the MTU is a privileged operation. Setting

 the MTU to too small values may cause kernel crashes.

 SIOCGIFHWADDR, SIOCSIFHWADDR

 Get or set the hardware address of a device using ifr_hwaddr.

 The hardware address is specified in a struct sockaddr. sa_fam?

 ily contains the ARPHRD_* device type, sa_data the L2 hardware

 address starting from byte 0. Setting the hardware address is a

 privileged operation.

 SIOCSIFHWBROADCAST

 Set the hardware broadcast address of a device from ifr_hwaddr.

 This is a privileged operation.

 SIOCGIFMAP, SIOCSIFMAP

 Get or set the interface's hardware parameters using ifr_map. Page 4/7

 Setting the parameters is a privileged operation.

 struct ifmap {

 unsigned long mem_start;

 unsigned long mem_end;

 unsigned short base_addr;

 unsigned char irq;

 unsigned char dma;

 unsigned char port;

 };

 The interpretation of the ifmap structure depends on the device

 driver and the architecture.

 SIOCADDMULTI, SIOCDELMULTI

 Add an address to or delete an address from the device's link

 layer multicast filters using ifr_hwaddr. These are privileged

 operations. See also packet(7) for an alternative.

 SIOCGIFTXQLEN, SIOCSIFTXQLEN

 Get or set the transmit queue length of a device using ifr_qlen.

 Setting the transmit queue length is a privileged operation.

 SIOCSIFNAME

 Changes the name of the interface specified in ifr_name to

 ifr_newname. This is a privileged operation. It is allowed

 only when the interface is not up.

 SIOCGIFCONF

 Return a list of interface (network layer) addresses. This cur?

 rently means only addresses of the AF_INET (IPv4) family for

 compatibility. Unlike the others, this ioctl passes an ifconf

 structure:

 struct ifconf {

 int ifc_len; /* size of buffer */

 union {

 char *ifc_buf; /* buffer address */

 struct ifreq *ifc_req; /* array of structures */

 }; Page 5/7

 };

 If ifc_req is NULL, SIOCGIFCONF returns the necessary buffer

 size in bytes for receiving all available addresses in ifc_len.

 Otherwise, ifc_req contains a pointer to an array of ifreq

 structures to be filled with all currently active L3 interface

 addresses. ifc_len contains the size of the array in bytes.

 Within each ifreq structure, ifr_name will receive the interface

 name, and ifr_addr the address. The actual number of bytes

 transferred is returned in ifc_len.

 If the size specified by ifc_len is insufficient to store all

 the addresses, the kernel will skip the exceeding ones and re?

 turn success. There is no reliable way of detecting this condi?

 tion once it has occurred. It is therefore recommended to ei?

 ther determine the necessary buffer size beforehand by calling

 SIOCGIFCONF with ifc_req set to NULL, or to retry the call with

 a bigger buffer whenever ifc_len upon return differs by less

 than sizeof(struct ifreq) from its original value.

 If an error occurs accessing the ifconf or ifreq structures,

 EFAULT will be returned.

 Most protocols support their own ioctls to configure protocol-specific

 interface options. See the protocol man pages for a description. For

 configuring IP addresses, see ip(7).

 In addition, some devices support private ioctls. These are not de?

 scribed here.

NOTES

 SIOCGIFCONF and the other ioctls that accept or return only AF_INET

 socket addresses are IP-specific and perhaps should rather be docu?

 mented in ip(7).

 The names of interfaces with no addresses or that don't have the

 IFF_RUNNING flag set can be found via /proc/net/dev.

 Local IPv6 IP addresses can be found via /proc/net or via rtnetlink(7).

BUGS

 glibc 2.1 is missing the ifr_newname macro in <net/if.h>. Add the fol? Page 6/7

 lowing to your program as a workaround:

 #ifndef ifr_newname

 #define ifr_newname ifr_ifru.ifru_slave

 #endif

SEE ALSO

 proc(5), capabilities(7), ip(7), rtnetlink(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-08-13 NETDEVICE(7)

Page 7/7

