
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'npm-access.1' command

$ man npm-access.1

NPM-ACCESS(1) NPM-ACCESS(1)

NAME

 npm-access - Set access level on published packages

 Synopsis

 npm access public [<package>]

 npm access restricted [<package>]

 npm access grant <read-only|read-write> <scope:team> [<package>]

 npm access revoke <scope:team> [<package>]

 npm access 2fa-required [<package>]

 npm access 2fa-not-required [<package>]

 npm access ls-packages [<user>|<scope>|<scope:team>]

 npm access ls-collaborators [<package> [<user>]]

 npm access edit [<package>]

 Description

 Used to set access controls on private packages.

 For all of the subcommands, npm access will perform actions on the

 packages in the current working directory if no package name is passed

 to the subcommand.

 ? public / restricted (deprecated): Set a package to be either publicly

 accessible or restricted.

 ? grant / revoke (deprecated): Add or remove the ability of users and

 teams to have read-only or read-write access to a package.

 ? 2fa-required / 2fa-not-required (deprecated): Configure whether a Page 1/3

 package requires that anyone publishing it have two-factor authenti?

 cation enabled on their account.

 ? ls-packages (deprecated): Show all of the packages a user or a team

 is able to access, along with the access level, except for read-only

 public packages (it won't print the whole registry listing)

 ? ls-collaborators (deprecated): Show all of the access privileges for

 a package. Will only show permissions for packages to which you have

 at least read access. If <user> is passed in, the list is filtered

 only to teams that user happens to belong to.

 ? edit (not implemented)

 Details

 npm access always operates directly on the current registry, config?

 urable from the command line using --registry=<registry url>.

 Unscoped packages are always public.

 Scoped packages default to restricted, but you can either publish them

 as public using npm publish --access=public, or set their access as

 public using npm access public after the initial publish.

 You must have privileges to set the access of a package:

 ? You are an owner of an unscoped or scoped package.

 ? You are a member of the team that owns a scope.

 ? You have been given read-write privileges for a package, either as a

 member of a team or directly as an owner.

 If you have two-factor authentication enabled then you'll be prompted

 to provide an otp token, or may use the --otp=... option to specify it

 on the command line.

 If your account is not paid, then attempts to publish scoped packages

 will fail with an HTTP 402 status code (logically enough), unless you

 use --access=public.

 Management of teams and team memberships is done with the npm team com?

 mand.

 Configuration

 registry

 ? Default: "https://registry.npmjs.org/" Page 2/3

 ? Type: URL

 The base URL of the npm registry.

 otp

 ? Default: null

 ? Type: null or String

 This is a one-time password from a two-factor authenticator. It's

 needed when publishing or changing package permissions with npm access.

 If not set, and a registry response fails with a challenge for a

 one-time password, npm will prompt on the command line for one.

 See Also

 ? libnpmaccess https://npm.im/libnpmaccess

 ? npm help team

 ? npm help publish

 ? npm help config

 ? npm help registry

 February 2023 NPM-ACCESS(1)

Page 3/3

