
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'npm-exec.1' command

$ man npm-exec.1

NPM-EXEC(1) NPM-EXEC(1)

NAME

 npm-exec - Run a command from a local or remote npm package

 Synopsis

 npm exec -- <pkg>[@<version>] [args...]

 npm exec --package=<pkg>[@<version>] -- <cmd> [args...]

 npm exec -c '<cmd> [args...]'

 npm exec --package=foo -c '<cmd> [args...]'

 alias: x

 Description

 This command allows you to run an arbitrary command from an npm package

 (either one installed locally, or fetched remotely), in a similar con?

 text as running it via npm run.

 Run without positional arguments or --call, this allows you to interac?

 tively run commands in the same sort of shell environment that pack?

 age.json scripts are run. Interactive mode is not supported in CI en?

 vironments when standard input is a TTY, to prevent hangs.

 Whatever packages are specified by the --package option will be pro?

 vided in the PATH of the executed command, along with any locally in?

 stalled package executables. The --package option may be specified

 multiple times, to execute the supplied command in an environment where

 all specified packages are available.

 If any requested packages are not present in the local project depen? Page 1/8

 dencies, then they are installed to a folder in the npm cache, which is

 added to the PATH environment variable in the executed process. A

 prompt is printed (which can be suppressed by providing either --yes or

 --no).

 Package names provided without a specifier will be matched with what?

 ever version exists in the local project. Package names with a speci?

 fier will only be considered a match if they have the exact same name

 and version as the local dependency.

 If no -c or --call option is provided, then the positional arguments

 are used to generate the command string. If no --package options are

 provided, then npm will attempt to determine the executable name from

 the package specifier provided as the first positional argument accord?

 ing to the following heuristic:

 ? If the package has a single entry in its bin field in package.json,

 or if all entries are aliases of the same command, then that command

 will be used.

 ? If the package has multiple bin entries, and one of them matches the

 unscoped portion of the name field, then that command will be used.

 ? If this does not result in exactly one option (either because there

 are no bin entries, or none of them match the name of the package),

 then npm exec exits with an error.

 To run a binary other than the named binary, specify one or more

 --package options, which will prevent npm from inferring the package

 from the first command argument.

 npx vs npm exec

 When run via the npx binary, all flags and options must be set prior to

 any positional arguments. When run via npm exec, a double-hyphen --

 flag can be used to suppress npm's parsing of switches and options that

 should be sent to the executed command.

 For example:

 $ npx foo@latest bar --package=@npmcli/foo

 In this case, npm will resolve the foo package name, and run the fol?

 lowing command: Page 2/8

 $ foo bar --package=@npmcli/foo

 Since the --package option comes after the positional arguments, it is

 treated as an argument to the executed command.

 In contrast, due to npm's argument parsing logic, running this command

 is different:

 $ npm exec foo@latest bar --package=@npmcli/foo

 In this case, npm will parse the --package option first, resolving the

 @npmcli/foo package. Then, it will execute the following command in

 that context:

 $ foo@latest bar

 The double-hyphen character is recommended to explicitly tell npm to

 stop parsing command line options and switches. The following command

 would thus be equivalent to the npx command above:

 $ npm exec -- foo@latest bar --package=@npmcli/foo

 Configuration

 package

 ? Default:

 ? Type: String (can be set multiple times)

 The package or packages to install for npm help exec

 call

 ? Default: ""

 ? Type: String

 Optional companion option for npm exec, npx that allows for specifying

 a custom command to be run along with the installed packages.

 npm exec --package yo --package generator-node --call "yo node"

 workspace

 ? Default:

 ? Type: String (can be set multiple times)

 Enable running a command in the context of the configured workspaces of

 the current project while filtering by running only the workspaces de?

 fined by this configuration option.

 Valid values for the workspace config are either:

 ? Workspace names Page 3/8

 ? Path to a workspace directory

 ? Path to a parent workspace directory (will result in selecting all

 workspaces within that folder)

 When set for the npm init command, this may be set to the folder of a

 workspace which does not yet exist, to create the folder and set it up

 as a brand new workspace within the project.

 This value is not exported to the environment for child processes.

 workspaces

 ? Default: null

 ? Type: null or Boolean

 Set to true to run the command in the context of all configured

 workspaces.

 Explicitly setting this to false will cause commands like install to

 ignore workspaces altogether. When not set explicitly:

 ? Commands that operate on the node_modules tree (install, update,

 etc.) will link workspaces into the node_modules folder. - Commands

 that do other things (test, exec, publish, etc.) will operate on the

 root project, unless one or more workspaces are specified in the

 workspace config.

 This value is not exported to the environment for child processes.

 include-workspace-root

 ? Default: false

 ? Type: Boolean

 Include the workspace root when workspaces are enabled for a command.

 When false, specifying individual workspaces via the workspace config,

 or all workspaces via the workspaces flag, will cause npm to operate

 only on the specified workspaces, and not on the root project.

 This value is not exported to the environment for child processes.

 Examples

 Run the version of tap in the local dependencies, with the provided ar?

 guments:

 $ npm exec -- tap --bail test/foo.js

 $ npx tap --bail test/foo.js Page 4/8

 Run a command other than the command whose name matches the package

 name by specifying a --package option:

 $ npm exec --package=foo -- bar --bar-argument

 # ~ or ~

 $ npx --package=foo bar --bar-argument

 Run an arbitrary shell script, in the context of the current project:

 $ npm x -c 'eslint && say "hooray, lint passed"'

 $ npx -c 'eslint && say "hooray, lint passed"'

 Workspaces support

 You may use the workspace or workspaces configs in order to run an ar?

 bitrary command from an npm package (either one installed locally, or

 fetched remotely) in the context of the specified workspaces. If no

 positional argument or --call option is provided, it will open an in?

 teractive subshell in the context of each of these configured

 workspaces one at a time.

 Given a project with configured workspaces, e.g:

 .

 +-- package.json

 `-- packages

 +-- a

 | `-- package.json

 +-- b

 | `-- package.json

 `-- c

 `-- package.json

 Assuming the workspace configuration is properly set up at the root

 level package.json file. e.g:

 {

 "workspaces": ["./packages/*"]

 }

 You can execute an arbitrary command from a package in the context of

 each of the configured workspaces when using the workspaces configura?

 tion options, in this example we're using eslint to lint any js file Page 5/8

 found within each workspace folder:

 npm exec --ws -- eslint ./*.js

 Filtering workspaces

 It's also possible to execute a command in a single workspace using the

 workspace config along with a name or directory path:

 npm exec --workspace=a -- eslint ./*.js

 The workspace config can also be specified multiple times in order to

 run a specific script in the context of multiple workspaces. When

 defining values for the workspace config in the command line, it also

 possible to use -w as a shorthand, e.g:

 npm exec -w a -w b -- eslint ./*.js

 This last command will run the eslint command in both ./packages/a and

 ./packages/b folders.

 Compatibility with Older npx Versions

 The npx binary was rewritten in npm v7.0.0, and the standalone npx

 package deprecated at that time. npx uses the npm exec command instead

 of a separate argument parser and install process, with some affor?

 dances to maintain backwards compatibility with the arguments it ac?

 cepted in previous versions.

 This resulted in some shifts in its functionality:

 ? Any npm config value may be provided.

 ? To prevent security and user-experience problems from mistyping pack?

 age names, npx prompts before installing anything. Suppress this

 prompt with the -y or --yes option.

 ? The --no-install option is deprecated, and will be converted to --no.

 ? Shell fallback functionality is removed, as it is not advisable.

 ? The -p argument is a shorthand for --parseable in npm, but shorthand

 for --package in npx. This is maintained, but only for the npx exe?

 cutable.

 ? The --ignore-existing option is removed. Locally installed bins are

 always present in the executed process PATH.

 ? The --npm option is removed. npx will always use the npm it ships

 with. Page 6/8

 ? The --node-arg and -n options are removed.

 ? The --always-spawn option is redundant, and thus removed.

 ? The --shell option is replaced with --script-shell, but maintained in

 the npx executable for backwards compatibility.

 A note on caching

 The npm cli utilizes its internal package cache when using the package

 name specified. You can use the following to change how and when the

 cli uses this cache. See npm help cache for more on how the cache

 works.

 prefer-online

 Forces staleness checks for packages, making the cli look for updates

 immediately even if the package is already in the cache.

 prefer-offline

 Bypasses staleness checks for packages. Missing data will still be re?

 quested from the server. To force full offline mode, use offline.

 offline

 Forces full offline mode. Any packages not locally cached will result

 in an error.

 workspace

 ? Default:

 ? Type: String (can be set multiple times)

 Enable running a command in the context of the configured workspaces of

 the current project while filtering by running only the workspaces de?

 fined by this configuration option.

 Valid values for the workspace config are either:

 ? Workspace names

 ? Path to a workspace directory

 ? Path to a parent workspace directory (will result to selecting all of

 the nested workspaces)

 This value is not exported to the environment for child processes.

 workspaces

 ? Alias: --ws

 ? Type: Boolean Page 7/8

 ? Default: false

 Run scripts in the context of all configured workspaces for the current

 project.

 See Also

 ? npm help run-script

 ? npm help scripts

 ? npm help test

 ? npm help start

 ? npm help restart

 ? npm help stop

 ? npm help config

 ? npm help workspaces

 ? npm help npx

 February 2023 NPM-EXEC(1)

Page 8/8

