
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'npm-pkg.1' command

$ man npm-pkg.1

NPM-PKG(1) NPM-PKG(1)

NAME

 npm-pkg - Manages your package.json

 Synopsis

 npm pkg set <key>=<value> [<key>=<value> ...]

 npm pkg get [<key> [<key> ...]]

 npm pkg delete <key> [<key> ...]

 npm pkg set [<array>[<index>].<key>=<value> ...]

 npm pkg set [<array>[].<key>=<value> ...]

 Description

 A command that automates the management of package.json files. npm pkg

 provide 3 different sub commands that allow you to modify or retrieve

 values for given object keys in your package.json.

 The syntax to retrieve and set fields is a dot separated representation

 of the nested object properties to be found within your package.json,

 it's the same notation used in npm help view to retrieve information

 from the registry manifest, below you can find more examples on how to

 use it.

 Returned values are always in json format.

 ? npm pkg get <field>

 Retrieves a value key, defined in your package.json file.

 For example, in order to retrieve the name of the current package,

 you Page 1/6

 can run:

 npm pkg get name

 It's also possible to retrieve multiple values at once:

 npm pkg get name version

 You can view child fields by separating them with a period. To re?

 trieve

 the value of a test script value, you would run the following com?

 mand:

 npm pkg get scripts.test

 For fields that are arrays, requesting a non-numeric field will re?

 turn

 all of the values from the objects in the list. For example, to get

 all

 the contributor emails for a package, you would run:

 npm pkg get contributors.email

 You may also use numeric indices in square braces to specifically se?

 lect

 an item in an array field. To just get the email address of the first

 contributor in the list, you can run:

 npm pkg get contributors[0].email

 For complex fields you can also name a property in square brackets

 to specifically select a child field. This is especially helpful

 with the exports object:

 npm pkg get "exports[.].require"

 ? npm pkg set <field>=<value>

 Sets a value in your package.json based on the field value. When

 saving to your package.json file the same set of rules used during

 npm install and other cli commands that touches the package.json

 file

 are used, making sure to respect the existing indentation and pos?

 sibly

 applying some validation prior to saving values to the file.

 The same syntax used to retrieve values from your package can also Page 2/6

 be used

 to define new properties or overriding existing ones, below are

 some

 examples of how the dot separated syntax can be used to edit your

 package.json file.

 Defining a new bin named mynewcommand in your package.json that

 points

 to a file cli.js:

 npm pkg set bin.mynewcommand=cli.js

 Setting multiple fields at once is also possible:

 npm pkg set description='Awesome package' engines.node='>=10'

 It's also possible to add to array values, for example to add a new

 contributor entry:

 npm pkg set contributors[0].name='Foo' contributors[0].email='foo@bar.ca'

 You may also append items to the end of an array using the special

 empty bracket notation:

 npm pkg set contributors[].name='Foo' contributors[].name='Bar'

 It's also possible to parse values as json prior to saving them to

 your

 package.json file, for example in order to set a "private": true

 property:

 npm pkg set private=true --json

 It also enables saving values as numbers:

 npm pkg set tap.timeout=60 --json

 ? npm pkg delete <key>

 Deletes a key from your package.json

 The same syntax used to set values from your package can also be

 used

 to remove existing ones. For example, in order to remove a script

 named

 build:

 npm pkg delete scripts.build

 Workspaces support Page 3/6

 You can set/get/delete items across your configured workspaces by using

 the workspace or workspaces config options.

 For example, setting a funding value across all configured workspaces

 of a project:

 npm pkg set funding=https://example.com --ws

 When using npm pkg get to retrieve info from your configured

 workspaces, the returned result will be in a json format in which top

 level keys are the names of each workspace, the values of these keys

 will be the result values returned from each of the configured

 workspaces, e.g:

 npm pkg get name version --ws

 {

 "a": {

 "name": "a",

 "version": "1.0.0"

 },

 "b": {

 "name": "b",

 "version": "1.0.0"

 }

 }

 Configuration

 force

 ? Default: false

 ? Type: Boolean

 Removes various protections against unfortunate side effects, common

 mistakes, unnecessary performance degradation, and malicious input.

 ? Allow clobbering non-npm files in global installs.

 ? Allow the npm version command to work on an unclean git repository.

 ? Allow deleting the cache folder with npm cache clean.

 ? Allow installing packages that have an engines declaration requiring

 a different version of npm.

 ? Allow installing packages that have an engines declaration requiring Page 4/6

 a different version of node, even if --engine-strict is enabled.

 ? Allow npm audit fix to install modules outside your stated dependency

 range (including SemVer-major changes).

 ? Allow unpublishing all versions of a published package.

 ? Allow conflicting peerDependencies to be installed in the root

 project.

 ? Implicitly set --yes during npm init.

 ? Allow clobbering existing values in npm pkg

 ? Allow unpublishing of entire packages (not just a single version).

 If you don't have a clear idea of what you want to do, it is strongly

 recommended that you do not use this option!

 json

 ? Default: false

 ? Type: Boolean

 Whether or not to output JSON data, rather than the normal output.

 ? In npm pkg set it enables parsing set values with JSON.parse() before

 saving them to your package.json.

 Not supported by all npm commands.

 workspace

 ? Default:

 ? Type: String (can be set multiple times)

 Enable running a command in the context of the configured workspaces of

 the current project while filtering by running only the workspaces de?

 fined by this configuration option.

 Valid values for the workspace config are either:

 ? Workspace names

 ? Path to a workspace directory

 ? Path to a parent workspace directory (will result in selecting all

 workspaces within that folder)

 When set for the npm init command, this may be set to the folder of a

 workspace which does not yet exist, to create the folder and set it up

 as a brand new workspace within the project.

 This value is not exported to the environment for child processes. Page 5/6

 workspaces

 ? Default: null

 ? Type: null or Boolean

 Set to true to run the command in the context of all configured

 workspaces.

 Explicitly setting this to false will cause commands like install to

 ignore workspaces altogether. When not set explicitly:

 ? Commands that operate on the node_modules tree (install, update,

 etc.) will link workspaces into the node_modules folder. - Commands

 that do other things (test, exec, publish, etc.) will operate on the

 root project, unless one or more workspaces are specified in the

 workspace config.

 This value is not exported to the environment for child processes.

See Also

 ? npm help install

 ? npm help init

 ? npm help config

 ? npm help set-script

 ? npm help workspaces

 February 2023 NPM-PKG(1)

Page 6/6

