
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'package-json.5' command

$ man package-json.5

PACKAGE.JSON(5) PACKAGE.JSON(5)

NAME

 package.json - Specifics of npm's package.json handling

 Description

 This document is all you need to know about what's required in your

 package.json file. It must be actual JSON, not just a JavaScript ob?

 ject literal.

 A lot of the behavior described in this document is affected by the

 config settings described in npm help config.

 name

 If you plan to publish your package, the most important things in your

 package.json are the name and version fields as they will be required.

 The name and version together form an identifier that is assumed to be

 completely unique. If you don't plan to publish your package, the name

 and version fields are optional. The name field contains your package

 name.

 Some rules:

 ? The name must be less than or equal to 214 characters. This includes

 the scope for scoped packages.

 ? The names of scoped packages can begin with a dot or an underscore.

 This is not permitted without a scope.

 ? New packages must not have uppercase letters in the name.

 ? The name ends up being part of a URL, an argument on the command Page 1/26

 line, and a folder name. Therefore, the name can't contain any

 non-URL-safe characters.

 Some tips:

 ? Don't use the same name as a core Node module.

 ? Don't put "js" or "node" in the name. It's assumed that it's js,

 since you're writing a package.json file, and you can specify the en?

 gine using the "engines" field. (See below.)

 ? The name will probably be passed as an argument to require(), so it

 should be something short, but also reasonably descriptive.

 ? You may want to check the npm registry to see if there's something by

 that name already, before you get too attached to it.

 https://www.npmjs.com/

 A name can be optionally prefixed by a scope, e.g. @myorg/mypackage.

 See npm help scope for more detail.

 version

 Changes to the package should come along with changes to the version.

 You can show developers how much they need to adjust on a new update by

 using semantic versioning ../../about-semantic-versioning

 Version must be parseable by node-semver

 https://github.com/npm/node-semver, which is bundled with npm as a de?

 pendency. (npm install semver to use it yourself.)

 description

 Put a description in it. It's a string. This helps people discover

 your package, as it's listed in npm search.

 keywords

 Put keywords in it. It's an array of strings. This helps people dis?

 cover your package as it's listed in npm search.

 homepage

 The url to the project homepage.

 Example:

 "homepage": "https://github.com/owner/project#readme"

 bugs

 The url to your project's issue tracker and / or the email address to Page 2/26

 which issues should be reported. These are helpful for people who en?

 counter issues with your package.

 It should look like this:

 {

 "url" : "https://github.com/owner/project/issues",

 "email" : "project@hostname.com"

 }

 You can specify either one or both values. If you want to provide only

 a url, you can specify the value for "bugs" as a simple string instead

 of an object.

 If a url is provided, it will be used by the npm bugs command.

 license

 You should specify a license for your package so that people know how

 they are permitted to use it, and any restrictions you're placing on

 it.

 If you're using a common license such as BSD-2-Clause or MIT, add a

 current SPDX license identifier for the license you're using, like

 this:

 {

 "license" : "BSD-3-Clause"

 }

 You can check the full list of SPDX license IDs https://spdx.org/li?

 censes/. Ideally you should pick one that is OSI https://open?

 source.org/licenses/alphabetical approved.

 If your package is licensed under multiple common licenses, use an SPDX

 license expression syntax version 2.0 string https://spdx.dev/specifi?

 cations/, like this:

 {

 "license" : "(ISC OR GPL-3.0)"

 }

 If you are using a license that hasn't been assigned an SPDX identi?

 fier, or if you are using a custom license, use a string value like

 this one: Page 3/26

 {

 "license" : "SEE LICENSE IN <filename>"

 }

 Then include a file named <filename> at the top level of the package.

 Some old packages used license objects or a "licenses" property con?

 taining an array of license objects:

 // Not valid metadata

 {

 "license" : {

 "type" : "ISC",

 "url" : "https://opensource.org/licenses/ISC"

 }

 }

 // Not valid metadata

 {

 "licenses" : [

 {

 "type": "MIT",

 "url": "https://www.opensource.org/licenses/mit-license.php"

 },

 {

 "type": "Apache-2.0",

 "url": "https://opensource.org/licenses/apache2.0.php"

 }

]

 }

 Those styles are now deprecated. Instead, use SPDX expressions, like

 this:

 {

 "license": "ISC"

 }

 {

 "license": "(MIT OR Apache-2.0)" Page 4/26

 }

 Finally, if you do not wish to grant others the right to use a private

 or unpublished package under any terms:

 {

 "license": "UNLICENSED"

 }

 Consider also setting "private": true to prevent accidental publica?

 tion.

 people fields: author, contributors

 The "author" is one person. "contributors" is an array of people. A

 "person" is an object with a "name" field and optionally "url" and

 "email", like this:

 {

 "name" : "Barney Rubble",

 "email" : "b@rubble.com",

 "url" : "http://barnyrubble.tumblr.com/"

 }

 Or you can shorten that all into a single string, and npm will parse it

 for you:

 {

 "author": "Barney Rubble <b@rubble.com> (http://barnyrubble.tumblr.com/)"

 }

 Both email and url are optional either way.

 npm also sets a top-level "maintainers" field with your npm user info.

 funding

 You can specify an object containing a URL that provides up-to-date in?

 formation about ways to help fund development of your package, or a

 string URL, or an array of these:

 {

 "funding": {

 "type" : "individual",

 "url" : "http://example.com/donate"

 }, Page 5/26

 "funding": {

 "type" : "patreon",

 "url" : "https://www.patreon.com/my-account"

 },

 "funding": "http://example.com/donate",

 "funding": [

 {

 "type" : "individual",

 "url" : "http://example.com/donate"

 },

 "http://example.com/donateAlso",

 {

 "type" : "patreon",

 "url" : "https://www.patreon.com/my-account"

 }

]

 }

 Users can use the npm fund subcommand to list the funding URLs of all

 dependencies of their project, direct and indirect. A shortcut to visit

 each funding url is also available when providing the project name such

 as: npm fund <projectname> (when there are multiple URLs, the first one

 will be visited)

 files

 The optional files field is an array of file patterns that describes

 the entries to be included when your package is installed as a depen?

 dency. File patterns follow a similar syntax to .gitignore, but re?

 versed: including a file, directory, or glob pattern (*, **/*, and

 such) will make it so that file is included in the tarball when it's

 packed. Omitting the field will make it default to ["*"], which means

 it will include all files.

 Some special files and directories are also included or excluded re?

 gardless of whether they exist in the files array (see below).

 You can also provide a .npmignore file in the root of your package or Page 6/26

 in subdirectories, which will keep files from being included. At the

 root of your package it will not override the "files" field, but in

 subdirectories it will. The .npmignore file works just like a .gitig?

 nore. If there is a .gitignore file, and .npmignore is missing, .gitig?

 nore's contents will be used instead.

 Files included with the "package.json#files" field cannot be excluded

 through .npmignore or .gitignore.

 Certain files are always included, regardless of settings:

 ? package.json

 ? README

 ? LICENSE / LICENCE

 ? The file in the "main" field

 README & LICENSE can have any case and extension.

 Conversely, some files are always ignored:

 ? .git

 ? CVS

 ? .svn

 ? .hg

 ? .lock-wscript

 ? .wafpickle-N

 ? .*.swp

 ? .DS_Store

 ? ._*

 ? npm-debug.log

 ? .npmrc

 ? node_modules

 ? config.gypi

 ? *.orig

 ? package-lock.json (use npm-shrinkwrap.json /configur?

 ing-npm/npm-shrinkwrap-json if you wish it to be published)

 main

 The main field is a module ID that is the primary entry point to your

 program. That is, if your package is named foo, and a user installs Page 7/26

 it, and then does require("foo"), then your main module's exports ob?

 ject will be returned.

 This should be a module relative to the root of your package folder.

 For most modules, it makes the most sense to have a main script and of?

 ten not much else.

 If main is not set it defaults to index.js in the package's root

 folder.

 browser

 If your module is meant to be used client-side the browser field should

 be used instead of the main field. This is helpful to hint users that

 it might rely on primitives that aren't available in Node.js modules.

 (e.g. window)

 bin

 A lot of packages have one or more executable files that they'd like to

 install into the PATH. npm makes this pretty easy (in fact, it uses

 this feature to install the "npm" executable.)

 To use this, supply a bin field in your package.json which is a map of

 command name to local file name. When this package is installed glob?

 ally, that file will be linked where global bins go so it is available

 to run by name. When this package is installed as a dependency in an?

 other package, the file will be linked where it will be available to

 that package either directly by npm exec or by name in other scripts

 when invoking them via npm run-script.

 For example, myapp could have this:

 {

 "bin": {

 "myapp": "./cli.js"

 }

 }

 So, when you install myapp, it'll create a symlink from the cli.js

 script to /usr/local/bin/myapp.

 If you have a single executable, and its name should be the name of the

 package, then you can just supply it as a string. For example: Page 8/26

 {

 "name": "my-program",

 "version": "1.2.5",

 "bin": "./path/to/program"

 }

 would be the same as this:

 {

 "name": "my-program",

 "version": "1.2.5",

 "bin": {

 "my-program": "./path/to/program"

 }

 }

 Please make sure that your file(s) referenced in bin starts with

 #!/usr/bin/env node, otherwise the scripts are started without the node

 executable!

 Note that you can also set the executable files using directories.bin

 #directoriesbin.

 See folders /configuring-npm/folders#executables for more info on exe?

 cutables.

 man

 Specify either a single file or an array of filenames to put in place

 for the man program to find.

 If only a single file is provided, then it's installed such that it is

 the result from man <pkgname>, regardless of its actual filename. For

 example:

 {

 "name": "foo",

 "version": "1.2.3",

 "description": "A packaged foo fooer for fooing foos",

 "main": "foo.js",

 "man": "./man/doc.1"

 } Page 9/26

 would link the ./man/doc.1 file in such that it is the target for man

 foo

 If the filename doesn't start with the package name, then it's pre?

 fixed. So, this:

 {

 "name": "foo",

 "version": "1.2.3",

 "description": "A packaged foo fooer for fooing foos",

 "main": "foo.js",

 "man": [

 "./man/foo.1",

 "./man/bar.1"

]

 }

 will create files to do man foo and man foo-bar.

 Man files must end with a number, and optionally a .gz suffix if they

 are compressed. The number dictates which man section the file is in?

 stalled into.

 {

 "name": "foo",

 "version": "1.2.3",

 "description": "A packaged foo fooer for fooing foos",

 "main": "foo.js",

 "man": [

 "./man/foo.1",

 "./man/foo.2"

]

 }

 will create entries for man foo and man 2 foo

 directories

 The CommonJS Packages http://wiki.commonjs.org/wiki/Packages/1.0 spec

 details a few ways that you can indicate the structure of your package

 using a directories object. If you look at npm's package.json Page 10/26

 https://registry.npmjs.org/npm/latest, you'll see that it has directo?

 ries for doc, lib, and man.

 In the future, this information may be used in other creative ways.

 directories.bin

 If you specify a bin directory in directories.bin, all the files in

 that folder will be added.

 Because of the way the bin directive works, specifying both a bin path

 and setting directories.bin is an error. If you want to specify indi?

 vidual files, use bin, and for all the files in an existing bin direc?

 tory, use directories.bin.

 directories.man

 A folder that is full of man pages. Sugar to generate a "man" array by

 walking the folder.

 repository

 Specify the place where your code lives. This is helpful for people who

 want to contribute. If the git repo is on GitHub, then the npm docs

 command will be able to find you.

 Do it like this:

 {

 "repository": {

 "type": "git",

 "url": "https://github.com/npm/cli.git"

 }

 }

 The URL should be a publicly available (perhaps read-only) url that can

 be handed directly to a VCS program without any modification. It

 should not be a url to an html project page that you put in your

 browser. It's for computers.

 For GitHub, GitHub gist, Bitbucket, or GitLab repositories you can use

 the same shortcut syntax you use for npm install:

 {

 "repository": "npm/npm",

 "repository": "github:user/repo", Page 11/26

 "repository": "gist:11081aaa281",

 "repository": "bitbucket:user/repo",

 "repository": "gitlab:user/repo"

 }

 If the package.json for your package is not in the root directory (for

 example if it is part of a monorepo), you can specify the directory in

 which it lives:

 {

 "repository": {

 "type": "git",

 "url": "https://github.com/facebook/react.git",

 "directory": "packages/react-dom"

 }

 }

 scripts

 The "scripts" property is a dictionary containing script commands that

 are run at various times in the lifecycle of your package. The key is

 the lifecycle event, and the value is the command to run at that point.

 See npm help scripts to find out more about writing package scripts.

 config

 A "config" object can be used to set configuration parameters used in

 package scripts that persist across upgrades. For instance, if a pack?

 age had the following:

 {

 "name": "foo",

 "config": {

 "port": "8080"

 }

 }

 It could also have a "start" command that referenced the npm_pack?

 age_config_port environment variable.

 dependencies

 Dependencies are specified in a simple object that maps a package name Page 12/26

 to a version range. The version range is a string which has one or more

 space-separated descriptors. Dependencies can also be identified with

 a tarball or git URL.

 Please do not put test harnesses or transpilers or other "development"

 time tools in your dependencies object. See devDependencies, below.

 See semver https://github.com/npm/node-semver#versions for more details

 about specifying version ranges.

 ? version Must match version exactly

 ? >version Must be greater than version

 ? >=version etc

 ? <version

 ? <=version

 ? ~version "Approximately equivalent to version" See semver

 https://github.com/npm/node-semver#versions

 ? ^version "Compatible with version" See semver

 https://github.com/npm/node-semver#versions

 ? 1.2.x 1.2.0, 1.2.1, etc., but not 1.3.0

 ? http://... See 'URLs as Dependencies' below

 ? * Matches any version

 ? "" (just an empty string) Same as *

 ? version1 - version2 Same as >=version1 <=version2.

 ? range1 || range2 Passes if either range1 or range2 are satisfied.

 ? git... See 'Git URLs as Dependencies' below

 ? user/repo See 'GitHub URLs' below

 ? tag A specific version tagged and published as tag See npm help

 dist-tag

 ? path/path/path See Local Paths #local-paths below

 For example, these are all valid:

 {

 "dependencies": {

 "foo": "1.0.0 - 2.9999.9999",

 "bar": ">=1.0.2 <2.1.2",

 "baz": ">1.0.2 <=2.3.4", Page 13/26

 "boo": "2.0.1",

 "qux": "<1.0.0 || >=2.3.1 <2.4.5 || >=2.5.2 <3.0.0",

 "asd": "http://asdf.com/asdf.tar.gz",

 "til": "~1.2",

 "elf": "~1.2.3",

 "two": "2.x",

 "thr": "3.3.x",

 "lat": "latest",

 "dyl": "file:../dyl"

 }

 }

 URLs as Dependencies

 You may specify a tarball URL in place of a version range.

 This tarball will be downloaded and installed locally to your package

 at install time.

 Git URLs as Dependencies

 Git urls are of the form:

 <protocol>://[<user>[:<password>]@]<hostname>[:<port>][:][/]<path>[#<commit-ish> | #semver:<semver>]

 <protocol> is one of git, git+ssh, git+http, git+https, or git+file.

 If #<commit-ish> is provided, it will be used to clone exactly that

 commit. If the commit-ish has the format #semver:<semver>, <semver> can

 be any valid semver range or exact version, and npm will look for any

 tags or refs matching that range in the remote repository, much as it

 would for a registry dependency. If neither #<commit-ish> or

 #semver:<semver> is specified, then the default branch is used.

 Examples:

 git+ssh://git@github.com:npm/cli.git#v1.0.27

 git+ssh://git@github.com:npm/cli#semver:^5.0

 git+https://isaacs@github.com/npm/cli.git

 git://github.com/npm/cli.git#v1.0.27

 When installing from a git repository, the presence of certain fields

 in the package.json will cause npm to believe it needs to perform a

 build. To do so your repository will be cloned into a temporary direc? Page 14/26

 tory, all of its deps installed, relevant scripts run, and the result?

 ing directory packed and installed.

 This flow will occur if your git dependency uses workspaces, or if any

 of the following scripts are present:

 ? build

 ? prepare

 ? prepack

 ? preinstall

 ? install

 ? postinstall

 If your git repository includes pre-built artifacts, you will likely

 want to make sure that none of the above scripts are defined, or your

 dependency will be rebuilt for every installation.

 GitHub URLs

 As of version 1.1.65, you can refer to GitHub urls as just "foo":

 "user/foo-project". Just as with git URLs, a commit-ish suffix can be

 included. For example:

 {

 "name": "foo",

 "version": "0.0.0",

 "dependencies": {

 "express": "expressjs/express",

 "mocha": "mochajs/mocha#4727d357ea",

 "module": "user/repo#feature\/branch"

 }

 }

 Local Paths

 As of version 2.0.0 you can provide a path to a local directory that

 contains a package. Local paths can be saved using npm install -S or

 npm install --save, using any of these forms:

 ../foo/bar

 ~/foo/bar

 ./foo/bar Page 15/26

 /foo/bar

 in which case they will be normalized to a relative path and added to

 your package.json. For example:

 {

 "name": "baz",

 "dependencies": {

 "bar": "file:../foo/bar"

 }

 }

 This feature is helpful for local offline development and creating

 tests that require npm installing where you don't want to hit an exter?

 nal server, but should not be used when publishing packages to the pub?

 lic registry.

 note: Packages linked by local path will not have their own dependen?

 cies installed when npm install is ran in this case. You must run npm

 install from inside the local path itself.

 devDependencies

 If someone is planning on downloading and using your module in their

 program, then they probably don't want or need to download and build

 the external test or documentation framework that you use.

 In this case, it's best to map these additional items in a devDependen?

 cies object.

 These things will be installed when doing npm link or npm install from

 the root of a package, and can be managed like any other npm configura?

 tion param. See npm help config for more on the topic.

 For build steps that are not platform-specific, such as compiling Cof?

 feeScript or other languages to JavaScript, use the prepare script to

 do this, and make the required package a devDependency.

 For example:

 {

 "name": "ethopia-waza",

 "description": "a delightfully fruity coffee varietal",

 "version": "1.2.3", Page 16/26

 "devDependencies": {

 "coffee-script": "~1.6.3"

 },

 "scripts": {

 "prepare": "coffee -o lib/ -c src/waza.coffee"

 },

 "main": "lib/waza.js"

 }

 The prepare script will be run before publishing, so that users can

 consume the functionality without requiring them to compile it them?

 selves. In dev mode (ie, locally running npm install), it'll run this

 script as well, so that you can test it easily.

 peerDependencies

 In some cases, you want to express the compatibility of your package

 with a host tool or library, while not necessarily doing a require of

 this host. This is usually referred to as a plugin. Notably, your mod?

 ule may be exposing a specific interface, expected and specified by the

 host documentation.

 For example:

 {

 "name": "tea-latte",

 "version": "1.3.5",

 "peerDependencies": {

 "tea": "2.x"

 }

 }

 This ensures your package tea-latte can be installed along with the

 second major version of the host package tea only. npm install

 tea-latte could possibly yield the following dependency graph:

 ??? tea-latte@1.3.5

 ??? tea@2.2.0

 In npm versions 3 through 6, peerDependencies were not automatically

 installed, and would raise a warning if an invalid version of the peer Page 17/26

 dependency was found in the tree. As of npm v7, peerDependencies are

 installed by default.

 Trying to install another plugin with a conflicting requirement may

 cause an error if the tree cannot be resolved correctly. For this rea?

 son, make sure your plugin requirement is as broad as possible, and not

 to lock it down to specific patch versions.

 Assuming the host complies with semver https://semver.org/, only

 changes in the host package's major version will break your plugin.

 Thus, if you've worked with every 1.x version of the host package, use

 "^1.0" or "1.x" to express this. If you depend on features introduced

 in 1.5.2, use "^1.5.2".

 peerDependenciesMeta

 When a user installs your package, npm will emit warnings if packages

 specified in peerDependencies are not already installed. The peerDepen?

 denciesMeta field serves to provide npm more information on how your

 peer dependencies are to be used. Specifically, it allows peer depen?

 dencies to be marked as optional.

 For example:

 {

 "name": "tea-latte",

 "version": "1.3.5",

 "peerDependencies": {

 "tea": "2.x",

 "soy-milk": "1.2"

 },

 "peerDependenciesMeta": {

 "soy-milk": {

 "optional": true

 }

 }

 }

 Marking a peer dependency as optional ensures npm will not emit a warn?

 ing if the soy-milk package is not installed on the host. This allows Page 18/26

 you to integrate and interact with a variety of host packages without

 requiring all of them to be installed.

 bundleDependencies

 This defines an array of package names that will be bundled when pub?

 lishing the package.

 In cases where you need to preserve npm packages locally or have them

 available through a single file download, you can bundle the packages

 in a tarball file by specifying the package names in the bundleDepen?

 dencies array and executing npm pack.

 For example:

 If we define a package.json like this:

 {

 "name": "awesome-web-framework",

 "version": "1.0.0",

 "bundleDependencies": [

 "renderized",

 "super-streams"

]

 }

 we can obtain awesome-web-framework-1.0.0.tgz file by running npm pack.

 This file contains the dependencies renderized and super-streams which

 can be installed in a new project by executing npm install awe?

 some-web-framework-1.0.0.tgz. Note that the package names do not in?

 clude any versions, as that information is specified in dependencies.

 If this is spelled "bundledDependencies", then that is also honored.

 Alternatively, "bundleDependencies" can be defined as a boolean value.

 A value of true will bundle all dependencies, a value of false will

 bundle none.

 optionalDependencies

 If a dependency can be used, but you would like npm to proceed if it

 cannot be found or fails to install, then you may put it in the option?

 alDependencies object. This is a map of package name to version or

 url, just like the dependencies object. The difference is that build Page 19/26

 failures do not cause installation to fail. Running npm install

 --omit=optional will prevent these dependencies from being installed.

 It is still your program's responsibility to handle the lack of the de?

 pendency. For example, something like this:

 try {

 var foo = require('foo')

 var fooVersion = require('foo/package.json').version

 } catch (er) {

 foo = null

 }

 if (notGoodFooVersion(fooVersion)) {

 foo = null

 }

 // .. then later in your program ..

 if (foo) {

 foo.doFooThings()

 }

 Entries in optionalDependencies will override entries of the same name

 in dependencies, so it's usually best to only put in one place.

 overrides

 If you need to make specific changes to dependencies of your dependen?

 cies, for example replacing the version of a dependency with a known

 security issue, replacing an existing dependency with a fork, or making

 sure that the same version of a package is used everywhere, then you

 may add an override.

 Overrides provide a way to replace a package in your dependency tree

 with another version, or another package entirely. These changes can be

 scoped as specific or as vague as desired.

 To make sure the package foo is always installed as version 1.0.0 no

 matter what version your dependencies rely on:

 {

 "overrides": {

 "foo": "1.0.0" Page 20/26

 }

 }

 The above is a short hand notation, the full object form can be used to

 allow overriding a package itself as well as a child of the package.

 This will cause foo to always be 1.0.0 while also making bar at any

 depth beyond foo also 1.0.0:

 {

 "overrides": {

 "foo": {

 ".": "1.0.0",

 "bar": "1.0.0"

 }

 }

 }

 To only override foo to be 1.0.0 when it's a child (or grandchild, or

 great grandchild, etc) of the package bar:

 {

 "overrides": {

 "bar": {

 "foo": "1.0.0"

 }

 }

 }

 Keys can be nested to any arbitrary length. To override foo only when

 it's a child of bar and only when bar is a child of baz:

 {

 "overrides": {

 "baz": {

 "bar": {

 "foo": "1.0.0"

 }

 }

 } Page 21/26

 }

 The key of an override can also include a version, or range of ver?

 sions. To override foo to 1.0.0, but only when it's a child of

 bar@2.0.0:

 {

 "overrides": {

 "bar@2.0.0": {

 "foo": "1.0.0"

 }

 }

 }

 You may not set an override for a package that you directly depend on

 unless both the dependency and the override itself share the exact same

 spec. To make this limitation easier to deal with, overrides may also

 be defined as a reference to a spec for a direct dependency by prefix?

 ing the name of the package you wish the version to match with a $.

 {

 "dependencies": {

 "foo": "^1.0.0"

 },

 "overrides": {

 // BAD, will throw an EOVERRIDE error

 // "foo": "^2.0.0"

 // GOOD, specs match so override is allowed

 // "foo": "^1.0.0"

 // BEST, the override is defined as a reference to the dependency

 "foo": "$foo",

 // the referenced package does not need to match the overridden one

 "bar": "$foo"

 }

 }

 engines

 You can specify the version of node that your stuff works on: Page 22/26

 {

 "engines": {

 "node": ">=0.10.3 <15"

 }

 }

 And, like with dependencies, if you don't specify the version (or if

 you specify "*" as the version), then any version of node will do.

 You can also use the "engines" field to specify which versions of npm

 are capable of properly installing your program. For example:

 {

 "engines": {

 "npm": "~1.0.20"

 }

 }

 Unless the user has set the engine-strict config flag, this field is

 advisory only and will only produce warnings when your package is in?

 stalled as a dependency.

 os

 You can specify which operating systems your module will run on:

 {

 "os": [

 "darwin",

 "linux"

]

 }

 You can also block instead of allowing operating systems, just prepend

 the blocked os with a '!':

 {

 "os": [

 "!win32"

]

 }

 The host operating system is determined by process.platform Page 23/26

 It is allowed to both block and allow an item, although there isn't any

 good reason to do this.

 cpu

 If your code only runs on certain cpu architectures, you can specify

 which ones.

 {

 "cpu": [

 "x64",

 "ia32"

]

 }

 Like the os option, you can also block architectures:

 {

 "cpu": [

 "!arm",

 "!mips"

]

 }

 The host architecture is determined by process.arch

 private

 If you set "private": true in your package.json, then npm will refuse

 to publish it.

 This is a way to prevent accidental publication of private reposito?

 ries. If you would like to ensure that a given package is only ever

 published to a specific registry (for example, an internal registry),

 then use the publishConfig dictionary described below to override the

 registry config param at publish-time.

 publishConfig

 This is a set of config values that will be used at publish-time. It's

 especially handy if you want to set the tag, registry or access, so

 that you can ensure that a given package is not tagged with "latest",

 published to the global public registry or that a scoped module is pri?

 vate by default. Page 24/26

 See npm help config to see the list of config options that can be over?

 ridden.

 workspaces

 The optional workspaces field is an array of file patterns that de?

 scribes locations within the local file system that the install client

 should look up to find each npm help workspace that needs to be sym?

 linked to the top level node_modules folder.

 It can describe either the direct paths of the folders to be used as

 workspaces or it can define globs that will resolve to these same fold?

 ers.

 In the following example, all folders located inside the folder ./pack?

 ages will be treated as workspaces as long as they have valid pack?

 age.json files inside them:

 {

 "name": "workspace-example",

 "workspaces": [

 "./packages/*"

]

 }

 See npm help workspaces for more examples.

 DEFAULT VALUES

 npm will default some values based on package contents.

 ? "scripts": {"start": "node server.js"} If there is a server.js file

 in the root of your package, then npm will default the start command

 to node server.js.

 ? "scripts":{"install": "node-gyp rebuild"} If there is a binding.gyp

 file in the root of your package and you have not defined an install

 or preinstall script, npm will default the install command to compile

 using node-gyp.

 ? "contributors": [...] If there is an AUTHORS file in the root of

 your package, npm will treat each line as a Name <email> (url) for?

 mat, where email and url are optional. Lines which start with a # or

 are blank, will be ignored. Page 25/26

 SEE ALSO

 ? semver https://github.com/npm/node-semver#versions

 ? npm help workspaces

 ? npm help init

 ? npm help version

 ? npm help config

 ? npm help help

 ? npm help install

 ? npm help publish

 ? npm help uninstall

 February 2023 PACKAGE.JSON(5)

Page 26/26

