r“‘ ,

University

FPDF Library

PDF generator

RedHat
Enterprise Linux

A

Manual Pages

Full credit is given to the above companies including the 0S
that this PDF file was generated!

Red Hat Enterprise Linux Release 9.2 Manual Pages on 'pam.d.5' command
$ man pam.d.5
PAM.CONF(5) Linux-PAM Manual PAM.CONF(5)
NAME
pam.conf, pam.d - PAM configuration files
DESCRIPTION
When a PAM aware privilege granting application is started, it
activates its attachment to the PAM-API. This activation performs a
number of tasks, the most important being the reading of the
configuration file(s): /etc/pam.conf. Alternatively, this may be the
contents of the /etc/pam.d/ directory. The presence of this directory
will cause Linux-PAM to ignore /etc/pam.conf.
These files list the PAMs that will do the authentication tasks
required by this service, and the appropriate behavior of the PAM-API
in the event that individual PAMs fail.
The syntax of the /etc/pam.conf configuration file is as follows. The
file is made up of a list of rules, each rule is typically placed on a
single line, but may be extended with an escaped end of line: "\<LF>".
Comments are preceded with "# marks and extend to the next end of
line.
The format of each rule is a space separated collection of tokens, the
first three being case-insensitive:
service type control module-path module-arguments
The syntax of files contained in the /etc/pam.d/ directory, are

identical except for the absence of any service field. In this case, Page 1/7

the service is the name of the file in the /etc/pam.d/ directory. This
filename must be in lower case.

An important feature of PAM, is that a number of rules may be stacked
to combine the services of a number of PAMs for a given authentication
task.

The service is typically the familiar name of the corresponding
application: login and su are good examples. The service-name, other,
is reserved for giving default rules. Only lines that mention the

current service (or in the absence of such, the other entries) will be
associated with the given service-application.

The type is the management group that the rule corresponds to. It is

used to specify which of the management groups the subsequent module is

to be associated with. Valid entries are:

account
this module type performs non-authentication based account
management. It is typically used to restrict/permit access to a
service based on the time of day, currently available system
resources (maximum number of users) or perhaps the location of the
applicant user -- 'root' login only on the console.

auth
this module type provides two aspects of authenticating the user.
Firstly, it establishes that the user is who they claim to be, by
instructing the application to prompt the user for a password or
other means of identification. Secondly, the module can grant group
membership or other privileges through its credential granting
properties.

password
this module type is required for updating the authentication token
associated with the user. Typically, there is one module for each
‘challenge/response’ based authentication (auth) type.

session
this module type is associated with doing things that need to be

done for the user before/after they can be given service. Such

Page 2/7

things include the logging of information concerning the
opening/closing of some data exchange with a user, mounting
directories, etc.
If the type value from the list above is prepended with a - character
the PAM library will not log to the system log if it is not possible to
load the module because it is missing in the system. This can be useful
especially for modules which are not always installed on the system and
are not required for correct authentication and authorization of the
login session.
The third field, control, indicates the behavior of the PAM-API should
the module fail to succeed in its authentication task. There are two
types of syntax for this control field: the simple one has a single
simple keyword; the more complicated one involves a square-bracketed
selection of value=action pairs.
For the simple (historical) syntax valid control values are:
required
failure of such a PAM will ultimately lead to the PAM-API returning
failure but only after the remaining stacked modules (for this
service and type) have been invoked.
requisite
like required, however, in the case that such a module returns a
failure, control is directly returned to the application or to the
superior PAM stack. The return value is that associated with the
first required or requisite module to fail. Note, this flag can be
used to protect against the possibility of a user getting the
opportunity to enter a password over an unsafe medium. It is
conceivable that such behavior might inform an attacker of valid
accounts on a system. This possibility should be weighed against
the not insignificant concerns of exposing a sensitive password in
a hostile environment.
sufficient
if such a module succeeds and no prior required module has failed

the PAM framework returns success to the application or to the

Page 3/7

superior PAM stack immediately without calling any further modules

in the stack. A failure of a sufficient module is ignored and

processing of the PAM module stack continues unaffected.
optional

the success or failure of this module is only important if it is

the only module in the stack associated with this service+type.
include

include all lines of given type from the configuration file

specified as an argument to this control.
substack

include all lines of given type from the configuration file

specified as an argument to this control. This differs from include

in that evaluation of the done and die actions in a substack does

not cause skipping the rest of the complete module stack, but only

of the substack. Jumps in a substack also can not make evaluation

jump out of it, and the whole substack is counted as one module

when the jump is done in a parent stack. The reset action will

reset the state of a module stack to the state it was in as of

beginning of the substack evaluation.
For the more complicated syntax valid control values have the following
form:

[valuel=actionl value2=action2 ...]

Where valueN corresponds to the return code from the function invoked
in the module for which the line is defined. It is selected from one of
these: success, open_err, symbol_err, service_err, system_err, buf_err,
perm_denied, auth_err, cred_insufficient, authinfo_unavail,
user_unknown, maxtries, new_authtok reqd, acct_expired, session_err,
cred_unavail, cred_expired, cred_err, no_module_data, conv_err,
authtok_err, authtok_recover_err, authtok _lock_busy,
authtok_disable_aging, try_again, ignore, abort, authtok_expired,
module_unknown, bad_item, conv_again, incomplete, and default.
The last of these, default, implies 'all valueN's not mentioned

explicitly. Note, the full list of PAM errors is available in Page 4/7

/usr/include/security/_pam_types.h. The actionN can take one of the

following forms:

ignore
when used with a stack of modules, the module's return status will
not contribute to the return code the application obtains.

bad
this action indicates that the return code should be thought of as
indicative of the module failing. If this module is the first in
the stack to fall, its status value will be used for that of the
whole stack.

die
equivalent to bad with the side effect of terminating the module
stack and PAM immediately returning to the application.

ok
this tells PAM that the administrator thinks this return code
should contribute directly to the return code of the full stack of
modules. In other words, if the former state of the stack would
lead to a return of PAM_SUCCESS, the module's return code will
override this value. Note, if the former state of the stack holds
some value that is indicative of a modules failure, this 'ok’ value
will not be used to override that value.

done
equivalent to ok with the side effect of terminating the module
stack and PAM immediately returning to the application.

N (an unsigned integer)
jump over the next N modules in the stack. Note that N equal to 0
is not allowed, it would be treated as ignore in such case. The
side effect depends on the PAM function call: for pam_authenticate,
pam_acct_mgmt, pam_chauthtok, and pam_open_session it is ignore;
for pam_setcred and pam_close_session it is one of ignore, ok, or
bad depending on the module's return value.

reset

clear all memory of the state of the module stack and start again Page 5/7

with the next stacked module.
Each of the four keywords: required; requisite; sufficient; and
optional, have an equivalent expression in terms of the [...] syntax.
They are as follows:
required

[success=0k new_authtok reqd=0ok ignore=ignore default=bad]
requisite

[success=0k new_authtok reqd=0k ignore=ignore default=die]
sufficient

[success=done new_authtok reqd=done default=ignore]
optional

[success=0k new_authtok reqd=ok default=ignore]
module-path is either the full filename of the PAM to be used by the
application (it begins with a '/'), or a relative pathname from the
default module location: /lib/security/ or /lib64/security/, depending
on the architecture.
module-arguments are a space separated list of tokens that can be used
to modify the specific behavior of the given PAM. Such arguments will
be documented for each individual module. Note, if you wish to include
spaces in an argument, you should surround that argument with square
brackets.

squid auth required pam_mysql.so user=passwd_query passwd=mada \
db=eminence [query=select user_name from internet_service \
where user_name='%u' and password=PASSWORD('%p') and \
service='web_proxy']
When using this convention, you can include [characters inside the
string, and if you wish to include a “]' character inside the string
that will survive the argument parsing, you should use "\]'. In other
words:
L. - L

Any line in (one of) the configuration file(s), that is not formatted
correctly, will generally tend (erring on the side of caution) to make

the authentication process fail. A corresponding error is written to

Page 6/7

the system log files with a call to syslog(3).
More flexible than the single configuration file is it to configure
libpam via the contents of the /etc/pam.d/ directory. In this case the
directory is filled with files each of which has a filename equal to a
service-name (in lower-case): it is the personal configuration file for
the named service.
The syntax of each file in /etc/pam.d/ is similar to that of the
/etc/pam.conf file and is made up of lines of the following form:
type control module-path module-arguments

The only difference being that the service-name is not present. The
service-name is of course the name of the given configuration file. For
example, /etc/pam.d/login contains the configuration for the login
service.

SEE ALSO
pam(3), PAM(8), pam_start(3)

Linux-PAM Manual 11/25/2020 PAM.CONF(5)

Page 7/7

