
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'pcre2partial.3' command

$ man pcre2partial.3

PCRE2PARTIAL(3) Library Functions Manual PCRE2PARTIAL(3)

NAME

 PCRE2 - Perl-compatible regular expressions

PARTIAL MATCHING IN PCRE2

 In normal use of PCRE2, if there is a match up to the end of a subject

 string, but more characters are needed to match the entire pattern,

 PCRE2_ERROR_NOMATCH is returned, just like any other failing match.

 There are circumstances where it might be helpful to distinguish this

 "partial match" case.

 One example is an application where the subject string is very long,

 and not all available at once. The requirement here is to be able to do

 the matching segment by segment, but special action is needed when a

 matched substring spans the boundary between two segments.

 Another example is checking a user input string as it is typed, to en?

 sure that it conforms to a required format. Invalid characters can be

 immediately diagnosed and rejected, giving instant feedback.

 Partial matching is a PCRE2-specific feature; it is not Perl-compati? Page 1/12

 ble. It is requested by setting one of the PCRE2_PARTIAL_HARD or

 PCRE2_PARTIAL_SOFT options when calling a matching function. The dif?

 ference between the two options is whether or not a partial match is

 preferred to an alternative complete match, though the details differ

 between the two types of matching function. If both options are set,

 PCRE2_PARTIAL_HARD takes precedence.

 If you want to use partial matching with just-in-time optimized code,

 as well as setting a partial match option for the matching function,

 you must also call pcre2_jit_compile() with one or both of these op?

 tions:

 PCRE2_JIT_PARTIAL_HARD

 PCRE2_JIT_PARTIAL_SOFT

 PCRE2_JIT_COMPLETE should also be set if you are going to run non-par?

 tial matches on the same pattern. Separate code is compiled for each

 mode. If the appropriate JIT mode has not been compiled, interpretive

 matching code is used.

 Setting a partial matching option disables two of PCRE2's standard op?

 timization hints. PCRE2 remembers the last literal code unit in a pat?

 tern, and abandons matching immediately if it is not present in the

 subject string. This optimization cannot be used for a subject string

 that might match only partially. PCRE2 also remembers a minimum length

 of a matching string, and does not bother to run the matching function

 on shorter strings. This optimization is also disabled for partial

 matching.

REQUIREMENTS FOR A PARTIAL MATCH

 A possible partial match occurs during matching when the end of the

 subject string is reached successfully, but either more characters are Page 2/12

 needed to complete the match, or the addition of more characters might

 change what is matched.

 Example 1: if the pattern is /abc/ and the subject is "ab", more char?

 acters are definitely needed to complete a match. In this case both

 hard and soft matching options yield a partial match.

 Example 2: if the pattern is /ab+/ and the subject is "ab", a complete

 match can be found, but the addition of more characters might change

 what is matched. In this case, only PCRE2_PARTIAL_HARD returns a par?

 tial match; PCRE2_PARTIAL_SOFT returns the complete match.

 On reaching the end of the subject, when PCRE2_PARTIAL_HARD is set, if

 the next pattern item is \z, \Z, \b, \B, or $ there is always a partial

 match. Otherwise, for both options, the next pattern item must be one

 that inspects a character, and at least one of the following must be

 true:

 (1) At least one character has already been inspected. An inspected

 character need not form part of the final matched string; lookbehind

 assertions and the \K escape sequence provide ways of inspecting char?

 acters before the start of a matched string.

 (2) The pattern contains one or more lookbehind assertions. This condi?

 tion exists in case there is a lookbehind that inspects characters be?

 fore the start of the match.

 (3) There is a special case when the whole pattern can match an empty

 string. When the starting point is at the end of the subject, the

 empty string match is a possibility, and if PCRE2_PARTIAL_SOFT is set

 and neither of the above conditions is true, it is returned. However,

 because adding more characters might result in a non-empty match,

 PCRE2_PARTIAL_HARD returns a partial match, which in this case means Page 3/12

 "there is going to be a match at this point, but until some more char?

 acters are added, we do not know if it will be an empty string or some?

 thing longer".

PARTIAL MATCHING USING pcre2_match()

 When a partial matching option is set, the result of calling

 pcre2_match() can be one of the following:

 A successful match

 A complete match has been found, starting and ending within this sub?

 ject.

 PCRE2_ERROR_NOMATCH

 No match can start anywhere in this subject.

 PCRE2_ERROR_PARTIAL

 Adding more characters may result in a complete match that uses one

 or more characters from the end of this subject.

 When a partial match is returned, the first two elements in the ovector

 point to the portion of the subject that was matched, but the values in

 the rest of the ovector are undefined. The appearance of \K in the pat?

 tern has no effect for a partial match. Consider this pattern:

 /abc\K123/

 If it is matched against "456abc123xyz" the result is a complete match,

 and the ovector defines the matched string as "123", because \K resets

 the "start of match" point. However, if a partial match is requested

 and the subject string is "456abc12", a partial match is found for the

 string "abc12", because all these characters are needed for a subse?

 quent re-match with additional characters. Page 4/12

 If there is more than one partial match, the first one that was found

 provides the data that is returned. Consider this pattern:

 /123\w+X|dogY/

 If this is matched against the subject string "abc123dog", both alter?

 natives fail to match, but the end of the subject is reached during

 matching, so PCRE2_ERROR_PARTIAL is returned. The offsets are set to 3

 and 9, identifying "123dog" as the first partial match. (In this exam?

 ple, there are two partial matches, because "dog" on its own partially

 matches the second alternative.)

 How a partial match is processed by pcre2_match()

 What happens when a partial match is identified depends on which of the

 two partial matching options is set.

 If PCRE2_PARTIAL_HARD is set, PCRE2_ERROR_PARTIAL is returned as soon

 as a partial match is found, without continuing to search for possible

 complete matches. This option is "hard" because it prefers an earlier

 partial match over a later complete match. For this reason, the assump?

 tion is made that the end of the supplied subject string is not the

 true end of the available data, which is why \z, \Z, \b, \B, and $ al?

 ways give a partial match.

 If PCRE2_PARTIAL_SOFT is set, the partial match is remembered, but

 matching continues as normal, and other alternatives in the pattern are

 tried. If no complete match can be found, PCRE2_ERROR_PARTIAL is re?

 turned instead of PCRE2_ERROR_NOMATCH. This option is "soft" because it

 prefers a complete match over a partial match. All the various matching

 items in a pattern behave as if the subject string is potentially com?

 plete; \z, \Z, and $ match at the end of the subject, as normal, and Page 5/12

 for \b and \B the end of the subject is treated as a non-alphanumeric.

 The difference between the two partial matching options can be illus?

 trated by a pattern such as:

 /dog(sbody)?/

 This matches either "dog" or "dogsbody", greedily (that is, it prefers

 the longer string if possible). If it is matched against the string

 "dog" with PCRE2_PARTIAL_SOFT, it yields a complete match for "dog".

 However, if PCRE2_PARTIAL_HARD is set, the result is PCRE2_ERROR_PAR?

 TIAL. On the other hand, if the pattern is made ungreedy the result is

 different:

 /dog(sbody)??/

 In this case the result is always a complete match because that is

 found first, and matching never continues after finding a complete

 match. It might be easier to follow this explanation by thinking of the

 two patterns like this:

 /dog(sbody)?/ is the same as /dogsbody|dog/

 /dog(sbody)??/ is the same as /dog|dogsbody/

 The second pattern will never match "dogsbody", because it will always

 find the shorter match first.

 Example of partial matching using pcre2test

 The pcre2test data modifiers partial_hard (or ph) and partial_soft (or

 ps) set PCRE2_PARTIAL_HARD and PCRE2_PARTIAL_SOFT, respectively, when

 calling pcre2_match(). Here is a run of pcre2test using a pattern that

 matches the whole subject in the form of a date: Page 6/12

 re> /^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/

 data> 25dec3\=ph

 Partial match: 23dec3

 data> 3ju\=ph

 Partial match: 3ju

 data> 3juj\=ph

 No match

 This example gives the same results for both hard and soft partial

 matching options. Here is an example where there is a difference:

 re> /^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/

 data> 25jun04\=ps

 0: 25jun04

 1: jun

 data> 25jun04\=ph

 Partial match: 25jun04

 With PCRE2_PARTIAL_SOFT, the subject is matched completely. For

 PCRE2_PARTIAL_HARD, however, the subject is assumed not to be complete,

 so there is only a partial match.

MULTI-SEGMENT MATCHING WITH pcre2_match()

 PCRE was not originally designed with multi-segment matching in mind.

 However, over time, features (including partial matching) that make

 multi-segment matching possible have been added. A very long string can

 be searched segment by segment by calling pcre2_match() repeatedly,

 with the aim of achieving the same results that would happen if the en?

 tire string was available for searching all the time. Normally, the

 strings that are being sought are much shorter than each individual

 segment, and are in the middle of very long strings, so the pattern is Page 7/12

 normally not anchored.

 Special logic must be implemented to handle a matched substring that

 spans a segment boundary. PCRE2_PARTIAL_HARD should be used, because it

 returns a partial match at the end of a segment whenever there is the

 possibility of changing the match by adding more characters. The

 PCRE2_NOTBOL option should also be set for all but the first segment.

 When a partial match occurs, the next segment must be added to the cur?

 rent subject and the match re-run, using the startoffset argument of

 pcre2_match() to begin at the point where the partial match started.

 For example:

 re> /\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d/

 data> ...the date is 23ja\=ph

 Partial match: 23ja

 data> ...the date is 23jan19 and on that day...\=offset=15

 0: 23jan19

 1: jan

 Note the use of the offset modifier to start the new match where the

 partial match was found. In this example, the next segment was added to

 the one in which the partial match was found. This is the most

 straightforward approach, typically using a memory buffer that is twice

 the size of each segment. After a partial match, the first half of the

 buffer is discarded, the second half is moved to the start of the buf?

 fer, and a new segment is added before repeating the match as in the

 example above. After a no match, the entire buffer can be discarded.

 If there are memory constraints, you may want to discard text that pre?

 cedes a partial match before adding the next segment. Unfortunately,

 this is not at present straightforward. In cases such as the above,

 where the pattern does not contain any lookbehinds, it is sufficient to Page 8/12

 retain only the partially matched substring. However, if the pattern

 contains a lookbehind assertion, characters that precede the start of

 the partial match may have been inspected during the matching process.

 When pcre2test displays a partial match, it indicates these characters

 with '<' if the allusedtext modifier is set:

 re> "(?<=123)abc"

 data> xx123ab\=ph,allusedtext

 Partial match: 123ab

 <<<

 However, the allusedtext modifier is not available for JIT matching,

 because JIT matching does not record the first (or last) consulted

 characters. For this reason, this information is not available via the

 API. It is therefore not possible in general to obtain the exact number

 of characters that must be retained in order to get the right match re?

 sult. If you cannot retain the entire segment, you must find some

 heuristic way of choosing.

 If you know the approximate length of the matching substrings, you can

 use that to decide how much text to retain. The only lookbehind infor?

 mation that is currently available via the API is the length of the

 longest individual lookbehind in a pattern, but this can be misleading

 if there are nested lookbehinds. The value returned by calling

 pcre2_pattern_info() with the PCRE2_INFO_MAXLOOKBEHIND option is the

 maximum number of characters (not code units) that any individual look?

 behind moves back when it is processed. A pattern such as

 "(?<=(?<!b)a)" has a maximum lookbehind value of one, but inspects two

 characters before its starting point.

 In a non-UTF or a 32-bit case, moving back is just a subtraction, but

 in UTF-8 or UTF-16 you have to count characters while moving back

 through the code units. Page 9/12

PARTIAL MATCHING USING pcre2_dfa_match()

 The DFA function moves along the subject string character by character,

 without backtracking, searching for all possible matches simultane?

 ously. If the end of the subject is reached before the end of the pat?

 tern, there is the possibility of a partial match.

 When PCRE2_PARTIAL_SOFT is set, PCRE2_ERROR_PARTIAL is returned only if

 there have been no complete matches. Otherwise, the complete matches

 are returned. If PCRE2_PARTIAL_HARD is set, a partial match takes

 precedence over any complete matches. The portion of the string that

 was matched when the longest partial match was found is set as the

 first matching string.

 Because the DFA function always searches for all possible matches, and

 there is no difference between greedy and ungreedy repetition, its be?

 haviour is different from the pcre2_match(). Consider the string "dog"

 matched against this ungreedy pattern:

 /dog(sbody)??/

 Whereas the standard function stops as soon as it finds the complete

 match for "dog", the DFA function also finds the partial match for

 "dogsbody", and so returns that when PCRE2_PARTIAL_HARD is set.

MULTI-SEGMENT MATCHING WITH pcre2_dfa_match()

 When a partial match has been found using the DFA matching function, it

 is possible to continue the match by providing additional subject data

 and calling the function again with the same compiled regular expres?

 sion, this time setting the PCRE2_DFA_RESTART option. You must pass the

 same working space as before, because this is where details of the pre? Page 10/12

 vious partial match are stored. You can set the PCRE2_PARTIAL_SOFT or

 PCRE2_PARTIAL_HARD options with PCRE2_DFA_RESTART to continue partial

 matching over multiple segments. Here is an example using pcre2test:

 re> /^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/

 data> 23ja\=dfa,ps

 Partial match: 23ja

 data> n05\=dfa,dfa_restart

 0: n05

 The first call has "23ja" as the subject, and requests partial match?

 ing; the second call has "n05" as the subject for the continued

 (restarted) match. Notice that when the match is complete, only the

 last part is shown; PCRE2 does not retain the previously partially-

 matched string. It is up to the calling program to do that if it needs

 to. This means that, for an unanchored pattern, if a continued match

 fails, it is not possible to try again at a new starting point. All

 this facility is capable of doing is continuing with the previous match

 attempt. For example, consider this pattern:

 1234|3789

 If the first part of the subject is "ABC123", a partial match of the

 first alternative is found at offset 3. There is no partial match for

 the second alternative, because such a match does not start at the same

 point in the subject string. Attempting to continue with the string

 "7890" does not yield a match because only those alternatives that

 match at one point in the subject are remembered. Depending on the ap?

 plication, this may or may not be what you want.

 If you do want to allow for starting again at the next character, one

 way of doing it is to retain some or all of the segment and try a new

 complete match, as described for pcre2_match() above. Another possibil? Page 11/12

 ity is to work with two buffers. If a partial match at offset n in the

 first buffer is followed by "no match" when PCRE2_DFA_RESTART is used

 on the second buffer, you can then try a new match starting at offset

 n+1 in the first buffer.

AUTHOR

 Philip Hazel

 University Computing Service

 Cambridge, England.

REVISION

 Last updated: 04 September 2019

 Copyright (c) 1997-2019 University of Cambridge.

PCRE2 10.34 04 September 2019 PCRE2PARTIAL(3)

Page 12/12

