r*‘ ,

University

FPDF Library

PDF generator

RedHat
Enterprise Linux

A

g

Manual Pages

Full credit is given to the above companies including the 0S
that this PDF file was generated!

Red Hat Enterprise Linux Release 9.2 Manual Pages on 'pid_t.3' command

$ man pid_t.3
SYSTEM_DATA_TYPES(7) Linux Programmer's Manual ~SYSTEM_DATA_TYPES(7)
NAME

system_data_types - overview of system data types
DESCRIPTION

aioch

Include: <aio.h>.

struct aiocb {

int aio_fildes; /* File descriptor */

off t aio_offset; /* File offset */

volatile void *aio_buf; /* Location of buffer */
size t aio_nbytes; /* Length of transfer */
int aio_reqprio; /* Request priority offset */

struct sigevent aio_sigevent; /* Signal number and value */
int aio_lio_opcode;/* Operation to be performed */
h
For further information about this structure, see aio(7).
Conforming to: POSIX.1-2001 and later.
See also: aio_cancel(3), aio_error(3), aio_fsync(3),
aio_read(3), aio_return(3), aio_suspend(3), aio_write(3),
lio_listio(3)
clock t
Include: <time.h> or <sys/types.h>. Alternatively,

<sys/time.h>. Page 1/19

Used for system time in clock ticks or CLOCKS_PER_SEC (defined
in <time.h>). According to POSIX, it shall be an integer type
or a real-floating type.
Conforming to: C99 and later; POSIX.1-2001 and later.
See also: times(2), clock(3)

clockid_t
Include: <sys/types.h>. Alternatively, <time.h>.
Used for clock ID type in the clock and timer functions. Ac?
cording to POSIX, it shall be defined as an arithmetic type.
Conforming to: POSIX.1-2001 and later.
See also: clock_adjtime(2), clock_getres(2), clock_nanosleep(2),
timer_create(2), clock_getcpuclockid(3)

dev t
Include: <sys/types.h>. Alternatively, <sys/stat.h>.
Used for device IDs. According to POSIX, it shall be an integer
type. For further details of this type, see makedev(3).
Conforming to: POSIX.1-2001 and later.
See also: mknod(2), stat(2)

div_t
Include: <stdlib.h>.
typedef struct {

int quot; /* Quotient */
int rem; /* Remainder */

} div_t;
It is the type of the value returned by the div(3) function.
Conforming to: C99 and later; POSIX.1-2001 and later.
See also: div(3)

double_t
Include: <math.h>.
The implementation's most efficient floating type at least as
wide as double. Its type depends on the value of the macro
FLT_EVAL_METHOD (defined in <float.h>):

0 double_tis double. Page 2/19

1 double_tis double.
2 double_tis long double.
For other values of FLT_EVAL_METHOD, the type of double_t is im?
plementation-defined.
Conforming to: C99 and later; POSIX.1-2001 and later.
See also: the float_t type in this page.
fd_set
Include: <sys/select.h>. Alternatively, <sys/time.h>.
A structure type that can represent a set of file descriptors.
According to POSIX, the maximum number of file descriptors in an
fd_set structure is the value of the macro FD_SETSIZE.
Conforming to: POSIX.1-2001 and later.
See also: select(2)
fenv_t
Include: <fenv.h>.
This type represents the entire floating-point environment, in?
cluding control modes and status flags; for further details, see
fenv(3).
Conforming to: C99 and later; POSIX.1-2001 and later.
See also: fenv(3)
fexcept_t
Include: <fenv.h>.
This type represents the floating-point status flags collec?
tively; for further details see fenv(3).
Conforming to: C99 and later; POSIX.1-2001 and later.
See also: fenv(3)
FILE
Include: <stdio.h>. Alternatively, <wchar.h>.
An object type used for streams.
Conforming to: C99 and later; POSIX.1-2001 and later.
See also: fclose(3), flockfile(3), fopen(3), fprintf(3),

fread(3), fscanf(3), stdin(3), stdio(3)
float_t Page 3/19

Include: <math.h>.
The implementation's most efficient floating type at least as
wide as float. Its type depends on the value of the macro
FLT_EVAL_METHOD (defined in <float.h>):
0 float_tis float.
1 float_tis double.
2 float_tis long double.
For other values of FLT_EVAL_METHOD, the type of float_t is im?
plementation-defined.
Conforming to: C99 and later; POSIX.1-2001 and later.
See also: the double_t type in this page.
gid_t
Include: <sys/types.h>. Alternatively, <grp.h>, <pwd.h>, <sig?
nal.h>, <stropts.h>, <sys/ipc.h>, <sys/stat.h>, or <unistd.h>.
A type used to hold group IDs. According to POSIX, this shall
be an integer type.
Conforming to: POSIX.1-2001 and later.
See also: chown(2), getgid(2), getegid(2), getgroups(2), getres?
gid(2), getgrnam(2), credentials(7)
id_t
Include: <sys/types.h>. Alternatively, <sys/resource.h>.
A type used to hold a general identifier. According to POSIX,
this shall be an integer type that can be used to contain a
pid_t, uid_t, or gid_t.
Conforming to: POSIX.1-2001 and later.
See also: getpriority(2), waitid(2)
imaxdiv_t
Include: <inttypes.h>.
typedef struct {
intmax_t quot; /* Quotient */
intmax_t rem; /* Remainder */
} imaxdiv_t;

It is the type of the value returned by the imaxdiv(3) function. Page 4/19

Conforming to: C99 and later; POSIX.1-2001 and later.
See also: imaxdiv(3)

intmax_t
Include: <stdint.h>. Alternatively, <inttypes.h>.
A signed integer type capable of representing any value of any
signed integer type supported by the implementation. According
to the C language standard, it shall be capable of storing val?
ues in the range [INTMAX_MIN, INTMAX_MAX].
The macro INTMAX_C() expands its argument to an integer constant
of type intmax_t.
The length modifier for intmax_t for the printf(3) and the
scanf(3) families of functions is j; resulting commonly in %jd
or %iji for printing intmax_t values.
Conforming to: C99 and later; POSIX.1-2001 and later.
Bugs: intmax_t is not large enough to represent values of type
__int128 in implementations where __int128 is defined and long
long is less than 128 bits wide.
See also: the uintmax_t type in this page.

intN_t
Include: <stdint.h>. Alternatively, <inttypes.h>.
int8_t, intl6 _t, int32_t, int64 _t
A signed integer type of a fixed width of exactly N bits, N be?
ing the value specified in its type name. According to the C
language standard, they shall be capable of storing values in
the range [INTN_MIN, INTN_MAX], substituting N by the appropri?
ate number.
According to POSIX, int8_t, int1l6_t, and int32_t are required;
int64_t is only required in implementations that provide integer
types with width 64; and all other types of this form are op?
tional.
The length modifiers for the intN_t types for the printf(3) fam?
ily of functions are expanded by macros of the forms PRIIN and

PRIIN (defined in <inttypes.h>); resulting for example in Page 5/19

%"PRId64" or %"PRIi64" for printing int64_t values. The length
modifiers for the intN_t types for the scanf(3) family of func?
tions are expanded by macros of the forms SCNdN and SCNIN, (de?
fined in <inttypes.h>); resulting for example in %"SCNd8" or
%"SCNi8" for scanning int8_t values.
Conforming to: C99 and later; POSIX.1-2001 and later.
See also: the intmax_t, uintN_t, and uintmax_t types in this
page.
intptr_t
Include: <stdint.h>. Alternatively, <inttypes.h>.
A signed integer type such that any valid (void *) value can be
converted to this type and back. According to the C language
standard, it shall be capable of storing values in the range
[INTPTR_MIN, INTPTR_MAX].
The length modifier for intptr_t for the printf(3) family of
functions is expanded by the macros PRIAPTR and PRIIPTR (defined
in <inttypes.h>); resulting commonly in %"PRIIPTR" or %"PRIIPTR"
for printing intptr_t values. The length modifier for intptr_t
for the scanf(3) family of functions is expanded by the macros
SCNdPTR and SCNIPTR, (defined in <inttypes.h>); resulting com?
monly in %"SCNdPTR" or %"SCNIPTR" for scanning intptr_t values.
Conforming to: C99 and later; POSIX.1-2001 and later.
See also: the uintptr_t and void * types in this page.
Iconv

Include: <locale.h>.
struct lconv { [* Values in the "C" locale: */

char *decimal_point; /*"."*/

char *thousands_sep; /*"™*

char *grouping; [

char *mon_decimal_point; /* " */

char *mon_thousands_sep; /* " */

char *mon_grouping; [

char *positive_sign; /*"*/ Page 6/19

char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char

char

3

Contains members related to the formatting of numeric values.

In the "C" locale, its members have the values shown in the com?

negative_sign; [™*/
currency_symbol; / "™ */

frac_digits; /* CHAR_MAX */

p_cs precedes; [* CHAR_MAX*/
n_cs_precedes; /* CHAR_MAX*/
p_sep_by space; [* CHAR_MAX*/
n_sep_by space; [* CHAR_MAX*/
p_sign_posn; /* CHAR_MAX */
n_sign_posn; /* CHAR_MAX */
int_curr_symbol; / " */
int_frac_digits; /* CHAR_MAX*/

int_ p_cs precedes; /* CHAR_MAX */
int_ n_cs_precedes; /* CHAR_MAX */
int_ p_sep by space; /* CHAR_MAX */
int_ n_sep_by space; /* CHAR_MAX */
int_p_sign_posn; /* CHAR_MAX */

int_n_sign_posn; /* CHAR_MAX */

ments above.

Conforming to: C11 and later; POSIX.1-2001 and later.

See also: setlocale(3), localeconv(3), charsets(5), locale(7)

Idiv_t

Include: <stdlib.h>.

typedef struct {
long quot; /* Quotient */
long rem; /* Remainder */
}div_t;

It is the type of the value returned by the Idiv(3) function.

Conforming to: C99 and later; POSIX.1-2001 and later.

See also: Idiv(3)

lidiv_t

Page 7/19

Include: <stdlib.h>.
typedef struct {
long long quot; /* Quotient */
long long rem; /* Remainder */

}idiv_t;
It is the type of the value returned by the Ildiv(3) function.
Conforming to: C99 and later; POSIX.1-2001 and later.
See also: lldiv(3)

off t
Include: <sys/types.h>. Alternatively, <aio.h>, <fcntl.h>,
<stdio.h>, <sys/mman.h>, <sys/stat.h.h>, or <unistd.h>.
Used for file sizes. According to POSIX, this shall be a signed
integer type.
Versions: <aio.h> and <stdio.h> define off t since POSIX.1-2008.
Conforming to: POSIX.1-2001 and later.
Notes: On some architectures, the width of this type can be con?
trolled with the feature test macro _FILE_OFFSET_BITS.
See also: Iseek(2), mmap(2), posix_fadvise(2), pread(2), trun?
cate(2), fseeko(3), lockf(3), posix_fallocate(3), fea?
ture_test_macros(7)

pid_t
Include: <sys/types.h>. Alternatively, <fcntl.h>, <sched.h>,
<signal.h>, <spawn.h>, <sys/msg.h>, <sys/sem.h>, <sys/shm.h>,
<sys/wait.h>, <termios.h>, <time.h>, <unistd.h>, or <utmpx.h>.
This type is used for storing process IDs, process group IDs,
and session IDs. According to POSIX, it shall be a signed inte?
ger type, and the implementation shall support one or more pro?
gramming environments where the width of pid_t is no greater
than the width of the type long.
Conforming to: POSIX.1-2001 and later.
See also: fork(2), getpid(2), getppid(2), getsid(2), gettid(2),
getpgid(2), kill(2), pidfd_open(2), sched_setscheduler(2), wait?

pid(2), sigqueue(3), credentials(7), Page 8/19

ptrdiff_t
Include: <stddef.h>.
Used for a count of elements, and array indices. Itis the re?
sult of subtracting two pointers. According to the C language
standard, it shall be a signed integer type capable of storing
values in the range [PTRDIFF_MIN, PTRDIFF_MAX].
The length modifier for ptrdiff_t for the printf(3) and the
scanf(3) families of functions is t; resulting commonly in %td
or %ti for printing ptrdiff_t values.
Conforming to: C99 and later; POSIX.1-2001 and later.
See also: the size_t and ssize_t types in this page.
regex_t
Include: <regex.h>.
typedef struct {
size_t re_nsub; /* Number of parenthesized subexpressions. */
} regex_t;
This is a structure type used in regular expression matching.
It holds a compiled regular expression, compiled with reg?
comp(3).
Conforming to: POSIX.1-2001 and later.
See also: regex(3)
regmatch_t
Include: <regex.h>.
typedef struct {
regoff t rm_so; /* Byte offset from start of string
to start of substring */
regoff t rm_eo; /* Byte offset from start of string of
the first character after the end of
substring */
} regmatch_t;
This is a structure type used in regular expression matching.
Conforming to: POSIX.1-2001 and later.

See also: regexec(3) Page 9/19

regoff_t
Include: <regex.h>.
According to POSIX, it shall be a signed integer type capable of
storing the largest value that can be stored in either a
ptrdiff_t type or a ssize_t type.
Versions: Prior to POSIX.1-2008, the type was capable of storing
the largest value that can be stored in either an off _t type or
a ssize_t type.
Conforming to: POSIX.1-2001 and later.
See also: the regmatch_t structure and the ptrdiff_t and ssize_t
types in this page.
sigevent
Include: <signal.h>. Alternatively, <aio.h>, <mqueue.h>, or
<time.h>.
struct sigevent {
int sigev_notify; /* Notification type */
int sigev_signo; /* Signal number */
union sigval sigev_value; /* Signal value */
void (*sigev_notify_function)(union sigval);
/* Notification function */
pthread_attr_t *sigev_notify_attributes;
/* Notification attributes */
h
For further details about this type, see sigevent(7).
Versions: <aio.h> and <time.h> define sigevent since
POSIX.1-2008.
Conforming to: POSIX.1-2001 and later.
See also: timer_create(2), getaddrinfo_a(3), lio_listio(3),
mq_notify(3)
See also the aiocb structure in this page.
siginfo_t
Include: <signal.h>. Alternatively, <sys/wait.h>.

typedef struct { Page 10/19

int si_signo; /* Signal number */
int si_code; /* Signal code */
pid_t si_pid; /* Sending process ID */
uid_t si_uid; /* Real user ID of sending process */
void *si_addr; /* Address of faulting instruction */
int si_status; /* Exit value or signal */
union sigval si_value; /* Signal value */
} siginfo_t;
Information associated with a signal. For further details on
this structure (including additional, Linux-specific fields),
see sigaction(2).
Conforming to: POSIX.1-2001 and later.
See also: pidfd_send_signal(2), rt_sigqueueinfo(2), sigac?
tion(2), sigwaitinfo(2), psiginfo(3)
sigset_t
Include: <signal.h>. Alternatively, <spawn.h>, or <sys/se?
lect.h>.
This is a type that represents a set of signals. According to
POSIX, this shall be an integer or structure type.
Conforming to: POSIX.1-2001 and later.
See also: epoll_pwait(2), ppoll(2), pselect(2), sigaction(2),
signalfd(2), sigpending(2), sigprocmask(2), sigsuspend(2), sig?
waitinfo(2), signal(7)
sigval
Include: <signal.h>.
union sigval {
int sigval_int; /* Integer value */
void *sigval_ptr; /* Pointer value */
h
Data passed with a signal.
Conforming to: POSIX.1-2001 and later.
See also: pthread_sigqueue(3), sigqueue(3), sigevent(7)

See also the sigevent structure and the siginfo_t type in this Page 11/19

page.
size t
Include: <stddef.h> or <sys/types.h>. Alternatively, <aio.h>,
<glob.h>, <grp.h>, <iconv.h>, <monetary.h>, <mqueue.h>,
<ndbm.h>, <pwd.h>, <regex.h>, <search.h>, <signal.h>, <stdio.h>,
<stdlib.h>, <string.h>, <strings.h>, <sys/mman.h>, <sys/msg.h>,
<sys/sem.h>, <sys/shm.h>, <sys/socket.h>, <sys/uio.h>, <time.h>,
<unistd.h>, <wchar.h>, or <wordexp.h>.
Used for a count of bytes. It is the result of the sizeof oper?
ator. According to the C language standard, it shall be an un?
signed integer type capable of storing values in the range [0,
SIZE_MAX]. According to POSIX, the implementation shall support
one or more programming environments where the width of size_t
is no greater than the width of the type long.
The length modifier for size_t for the printf(3) and the
scanf(3) families of functions is z; resulting commonly in %zu
or %zx for printing size_t values.
Versions: <aio.h>, <glob.h>, <grp.h>, <iconv.h>, <mqueue.h>,
<pwd.h>, <signal.h>, and <sys/socket.h> define size t since
POSIX.1-2008.
Conforming to: C99 and later; POSIX.1-2001 and later.
See also: read(2), write(2), fread(3), fwrite(3), memcmp(3),
memcpy(3), memset(3), offsetof(3)
See also the ptrdiff_t and ssize_t types in this page.
ssize_t
Include: <sys/types.h>. Alternatively, <aio.h>, <monetary.h>,
<mqueue.h>, <stdio.h>, <sys/msg.h>, <sys/socket.h>, <sys/uio.h>,
or <unistd.h>.
Used for a count of bytes or an error indication. According to
POSIX, it shall be a signed integer type capable of storing val?
ues at leastin the range [-1, SSIZE_MAX], and the implementa?
tion shall support one or more programming environments where

the width of ssize_tis no greater than the width of the type Page 12/19

long.

Glibc and most other implementations provide a length modifier
for ssize_t for the printf(3) and the scanf(3) families of func?
tions, which is z; resulting commonly in %zd or %zi for printing
ssize_t values. Although z works for ssize_t on most implemen?
tations, portable POSIX programs should avoid using it?for exam?
ple, by converting the value to intmax_t and using its length
modifier (j).

Conforming to: POSIX.1-2001 and later.

See also: read(2), readlink(2), readv(2), recv(2), send(2),
write(2)

See also the ptrdiff_t and size_t types in this page.

suseconds _t

Include: <sys/types.h>. Alternatively, <sys/select.h>, or
<sys/time.h>.

Used for time in microseconds. According to POSIX, it shall be
a signed integer type capable of storing values at least in the

range [-1, 1000000], and the implementation shall support one or

more programming environments where the width of suseconds_tis

no greater than the width of the type long.
Conforming to: POSIX.1-2001 and later.

See also: the timeval structure in this page.

time_t

Include: <time.h> or <sys/types.h>. Alternatively, <sched.h>,
<sys/msg.h>, <sys/select.h>, <sys/sem.h>, <sys/shm.h>,
<sys/stat.h>, <sys/time.h>, or <utime.h>.

Used for time in seconds. According to POSIX, it shall be an
integer type.

Versions: <sched.h> defines time_t since POSIX.1-2008.
Conforming to: C99 and later; POSIX.1-2001 and later.

See also: stime(2), time(2), ctime(3), difftime(3)

timer_t

Include: <sys/types.h>. Alternatively, <time.h>.

Page 13/19

Used for timer ID returned by timer_create(2). According to
POSIX, there are no defined comparison or assignment operators
for this type.
Conforming to: POSIX.1-2001 and later.
See also: timer_create(2), timer_delete(2), timer_getoverrun(2),
timer_settime(2)
timespec
Include: <time.h>. Alternatively, <aio.h>, <mqueue.h>,
<sched.h>, <signal.h>, <sys/select.h>, or <sys/stat.h>.
struct timespec {
time_t tv_sec; /* Seconds */
long tv_nsec; /* Nanoseconds */
h
Describes times in seconds and nanoseconds.
Conforming to: C11 and later; POSIX.1-2001 and later.
See also: clock_gettime(2), clock _nanosleep(2), nanosleep(2),
timerfd_gettime(2), timer_gettime(2)
timeval
Include: <sys/time.h>. Alternatively, <sys/resource.h>,
<sys/select.h>, or <utmpx.h>.
struct timeval {
time_t tv_sec; /* Seconds */
suseconds_t tv_usec; /* Microseconds */
%
Describes times in seconds and microseconds.
Conforming to: POSIX.1-2001 and later.
See also: gettimeofday(2), select(2), utimes(2), adjtime(3), fu?
times(3), timeradd(3)
uid_t
Include: <sys/types.h>. Alternatively, <pwd.h>, <signal.h>,
<stropts.h>, <sys/ipc.h>, <sys/stat.h>, or <unistd.h>.
A type used to hold user IDs. According to POSIX, this shall be

an integer type. Page 14/19

Conforming to: POSIX.1-2001 and later.
See also: chown(2), getuid(2), geteuid(2), getresuid(2), getpw?
nam(2), credentials(7)

uintmax_t
Include: <stdint.h>. Alternatively, <inttypes.h>.
An unsigned integer type capable of representing any value of
any unsigned integer type supported by the implementation. Ac?
cording to the C language standard, it shall be capable of stor?
ing values in the range [0, UINTMAX_MAX].
The macro UINTMAX_C() expands its argument to an integer con?
stant of type uintmax_t.
The length modifier for uintmax_t for the printf(3) and the
scanf(3) families of functions is j; resulting commonly in %ju
or %jx for printing uintmax_t values.
Conforming to: C99 and later; POSIX.1-2001 and later.
Bugs: uintmax_t is not large enough to represent values of type
unsigned __int128 in implementations where unsigned __ int128 is
defined and unsigned long long is less than 128 bits wide.
See also: the intmax_t type in this page.

uintN_t
Include: <stdint.h>. Alternatively, <inttypes.h>.
uint8_t, uintl6_t, uint32_t, uinté4_t
An unsigned integer type of a fixed width of exactly N bits, N
being the value specified in its type name. According to the C
language standard, they shall be capable of storing values in
the range [0, UINTN_MAX], substituting N by the appropriate num?
ber.
According to POSIX, uint8_t, uintl6_t, and uint32_t are re?
quired; uint64_t is only required in implementations that pro?
vide integer types with width 64; and all other types of this
form are optional.
The length modifiers for the uintN_t types for the printf(3)

family of functions are expanded by macros of the forms PRIuN, Page 15/19

PRIoN, PRIxN, and PRIXN (defined in <inttypes.h>); resulting for
example in %"PRIu32" or %"PRIx32" for printing uint32_t values.
The length modifiers for the uintN_t types for the scanf(3) fam?
ily of functions are expanded by macros of the forms SCNuN, SC?
NoN, SCNxN, and SCNXN (defined in <inttypes.h>); resulting for
example in %"SCNul6" or %"SCNx16" for scanning uint16_t values.
Conforming to: C99 and later; POSIX.1-2001 and later.
See also: the intmax_t, intN_t, and uintmax_t types in this
page.

uintptr_t
Include: <stdint.h>. Alternatively, <inttypes.h>.
An unsigned integer type such that any valid (void *) value can
be converted to this type and back. According to the C language
standard, it shall be capable of storing values in the range [0,
UINTPTR_MAX].
The length modifier for uintptr_t for the printf(3) family of
functions is expanded by the macros PRIUPTR, PRIOPTR, PRIXPTR,
and PRIXPTR (defined in <inttypes.h>); resulting commonly in
%"PRIUPTR" or %"PRIXPTR" for printing uintptr_t values. The
length modifier for uintptr_t for the scanf(3) family of func?
tions is expanded by the macros SCNUPTR, SCNoPTR, SCNxPTR, and
SCNXPTR (defined in <inttypes.h>); resulting commonly in %"SC?
NUPTR" or %"SCNxPTR" for scanning uintptr_t values.
Conforming to: C99 and later; POSIX.1-2001 and later.
See also: the intptr_t and void * types in this page.

va_list
Include: <stdarg>. Alternatively, <stdio.h>, or <wchar.h>.
Used by functions with a varying number of arguments of varying
types. The function must declare an object of type va_list
which is used by the macros va_start(3), va_arg(3), va_copy(3),
and va_end(3) to traverse the list of arguments.
Conforming to: C99 and later; POSIX.1-2001 and later.

See also: va_start(3), va_arg(3), va_copy(3), va_end(3) Page 16/19

void *
According to the C language standard, a pointer to any object
type may be converted to a pointer to void and back. POSIX fur?
ther requires that any pointer, including pointers to functions,
may be converted to a pointer to void and back.
Conversions from and to any other pointer type are done implic?
itly, not requiring casts at all. Note that this feature pre?
vents any kind of type checking: the programmer should be care?
ful not to convert a void * value to a type incompatible to that
of the underlying data, because that would result in undefined
behavior.
This type is useful in function parameters and return value to
allow passing values of any type. The function will typically
use some mechanism to know the real type of the data being
passed via a pointer to void.
A value of this type can't be dereferenced, as it would give a
value of type void, which is not possible. Likewise, pointer
arithmetic is not possible with this type. However, in GNU C,
pointer arithmetic is allowed as an extension to the standard;
this is done by treating the size of a void or of a function as
1. A consequence of this is that sizeof is also allowed on void
and on function types, and returns 1.
The conversion specifier for void * for the printf(3) and the
scanf(3) families of functions is p.
Versions: The POSIX requirement about compatibility between void
* and function pointers was added in POSIX.1-2008 Technical Cor?
rigendum 1 (2013).
Conforming to: C99 and later; POSIX.1-2001 and later.
See also: malloc(3), memcmp(3), memcpy(3), memset(3)
See also the intptr_t and uintptr_t types in this page.

NOTES
The structures described in this manual page shall contain, at least,

the members shown in their definition, in no particular order. Page 17/19

Most of the integer types described in this page don't have a corre?
sponding length modifier for the printf(3) and the scanf(3) families of
functions. To print a value of an integer type that doesn't have a
length modifier, it should be converted to intmax_t or uintmax_t by an
explicit cast. To scan into a variable of an integer type that doesn't
have a length modifier, an intermediate temporary variable of type int?
max_t or uintmax_t should be used. When copying from the temporary
variable to the destination variable, the value could overflow. If the
type has upper and lower limits, the user should check that the value
is within those limits, before actually copying the value. The example
below shows how these conversions should be done.
Conventions used in this page

In "Conforming to" we only concern ourselves with C99 and later and
POSIX.1-2001 and later. Some types may be specified in earlier ver?
sions of one of these standards, but in the interests of simplicity we
omit details from earlier standards.
In "Include”, we first note the "primary" header(s) that define the
type according to either the C or POSIX.1 standards. Under "Alterna?
tively", we note additional headers that the standards specify shall
define the type.

EXAMPLES
The program shown below scans from a string and prints a value stored
in a variable of an integer type that doesn't have a length modifier.
The appropriate conversions from and to intmax_t, and the appropriate
range checks, are used as explained in the notes section above.
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
int
main (void)
{

static const char *const str = "500000 us in half a second"; Page 18/19

suseconds_t us;
intmax_t tmp;
/* Scan the number from the string into the temporary variable */
sscanf(str, "%jd", &tmp);
/* Check that the value is within the valid range of suseconds_t */
if (tmp < -1 || tmp > 1000000) {
fprintf(stderr, "Scanned value outside valid range!\n");
exit(EXIT_FAILURE);
}
/* Copy the value to the suseconds_t variable ‘us' */
us = tmp;
I* Even though suseconds_t can hold the value -1, this isn't
a sensible number of microseconds */
if (us<0){
fprintf(stderr, "Scanned value shouldn't be negative!\n");
exit(EXIT_FAILURE);
}
* Print the value */
printf("There are %jd microseconds in half a second.\n",
(intmax_t) us);
exit(EXIT_SUCCESS);
}
SEE ALSO
feature_test_macros(7), standards(7)
COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A
description of the project, information about reporting bugs, and the
latest version of this page, can be found at
https://www.kernel.org/doc/man-pages/.

Linux 2020-12-21 SYSTEM_DATA_TYPES(7)

Page 19/19

