r*‘ ,

University

FPDF Library

PDF generator

RedHat
Enterprise Linux

A

g

Manual Pages

Full credit is given to the above companies including the 0S
that this PDF file was generated!

Red Hat Enterprise Linux Release 9.2 Manual Pages on 'pkey_mprotect.2' command

$ man pkey_mprotect.2
MPROTECT(2)

NAME

Linux Programmer's Manual MPROTECT(2)

mprotect, pkey_mprotect - set protection on a region of memory

SYNOPSIS

#include <sys/mman

.h>

int mprotect(void *addr, size_t len, int prot);

#define _GNU_SOURCE /* See feature_test_macros(7) */

#include <sys/mman

.h>

int pkey_mprotect(void *addr, size_t len, int prot, int pkey);

DESCRIPTION

mprotect() changes

the access protections for the calling process's

memory pages containing any part of the address range in the interval

[addr, addr+len-1]. addr must be aligned to a page boundary.

If the calling process
the protections, then

process.

tries to access memory in a manner that violates

the kernel generates a SIGSEGV signal for the

prot is a combination of the following access flags: PROT_NONE or a

bitwise-or of the othe

PROT_NONE

r values in the following list:

The memory cannot be accessed at all.

PROT_READ

The memory can be read.

PROT_WRITE

Page 1/6

The memory can be modified.

PROT_EXEC
The memory can be executed.

PROT_SEM (since Linux 2.5.7)
The memory can be used for atomic operations. This flag was in?
troduced as part of the futex(2) implementation (in order to
guarantee the ability to perform atomic operations required by
commands such as FUTEX_WAIT), but is not currently used in on
any architecture.

PROT_SAO (since Linux 2.6.26)
The memory should have strong access ordering. This feature is
specific to the PowerPC architecture (version 2.06 of the archi?
tecture specification adds the SAO CPU feature, and it is avail?
able on POWER 7 or PowerPC A2, for example).

Additionally (since Linux 2.6.0), prot can have one of the following

flags set:

PROT_GROWSUP
Apply the protection mode up to the end of a mapping that grows
upwards. (Such mappings are created for the stack area on ar?
chitectures?for example, HP-PARISC?that have an upwardly growing
stack.)

PROT_GROWSDOWN
Apply the protection mode down to the beginning of a mapping
that grows downward (which should be a stack segment or a seg?
ment mapped with the MAP_GROWSDOWN flag set).

Like mprotect(), pkey_mprotect() changes the protection on the pages

specified by addr and len. The pkey argument specifies the protection

key (see pkeys(7)) to assign to the memory. The protection key must be

allocated with pkey_alloc(2) before it is passed to pkey mprotect().

For an example of the use of this system call, see pkeys(7).

RETURN VALUE
On success, mprotect() and pkey_mprotect() return zero. On error,

these system calls return -1, and errno is set appropriately. Page 2/6

ERRORS
EACCES The memory cannot be given the specified access. This can hap?
pen, for example, if you mmap(2) a file to which you have read-
only access, then ask mprotect() to mark it PROT_WRITE.
EINVAL addr is not a valid pointer, or not a multiple of the system
page size.

EINVAL (pkey_mprotect()) pkey has not been allocated with pkey_alloc(2)

EINVAL Both PROT_GROWSUP and PROT_GROWSDOWN were specified in prot.

EINVAL Invalid flags specified in prot.

EINVAL (PowerPC architecture) PROT_SAO was specified in prot, but SAO

hardware feature is not available.
ENOMEM Internal kernel structures could not be allocated.
ENOMEM Addresses in the range [addr, addr+len-1] are invalid for the
address space of the process, or specify one or more pages that
are not mapped. (Before kernel 2.4.19, the error EFAULT was in?
correctly produced for these cases.)
ENOMEM Changing the protection of a memory region would result in the
total number of mappings with distinct attributes (e.g., read
versus read/write protection) exceeding the allowed maximum.
(For example, making the protection of a range PROT_READ in the
middle of a region currently protected as PROT_READ|PROT_WRITE
would result in three mappings: two read/write mappings at each
end and a read-only mapping in the middle.)
VERSIONS
pkey mprotect() first appeared in Linux 4.9; library support was added
in glibc 2.27.
CONFORMING TO
mprotect(): POSIX.1-2001, POSIX.1-2008, SVr4. POSIX says that the be?
havior of mprotect() is unspecified if it is applied to a region of
memory that was not obtained via mmap(2).
pkey mprotect() is a nonportable Linux extension.
NOTES

On Linux, it is always permissible to call mprotect() on any address in

Page 3/6

a process's address space (except for the kernel vsyscall area). In
particular, it can be used to change existing code mappings to be
writable.
Whether PROT_EXEC has any effect different from PROT_READ depends on
processor architecture, kernel version, and process state. If READ_IM?
PLIES _EXEC is set in the process's personality flags (see personal?
ity(2)), specifying PROT_READ will implicitly add PROT_EXEC.
On some hardware architectures (e.g., i386), PROT_WRITE implies
PROT_READ.
POSIX.1 says that an implementation may permit access other than that
specified in prot, but at a minimum can allow write access only if
PROT_WRITE has been set, and must not allow any access if PROT_NONE has
been set.
Applications should be careful when mixing use of mprotect() and
pkey mprotect(). On x86, when mprotect() is used with prot set to
PROT_EXEC a pkey may be allocated and set on the memory implicitly by
the kernel, but only when the pkey was 0 previously.
On systems that do not support protection keys in hardware, pkey_mpro?
tect() may still be used, but pkey must be set to -1. When called this
way, the operation of pkey_mprotect() is equivalent to mprotect().
EXAMPLES

The program below demonstrates the use of mprotect(). The program al?
locates four pages of memory, makes the third of these pages read-only,
and then executes a loop that walks upward through the allocated region
modifying bytes.
An example of what we might see when running the program is the follow?
ing:

$.Ja.out

Start of region: 0x804c000

Got SIGSEGV at address: 0x804e000

Program source

#include <unistd.h>

#include <signal.h> Page 4/6

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/mman.h>
#define handle_error(msg) \
do { perror(msg); exit(EXIT_FAILURE); } while (0)
static char *buffer;
static void
handler(int sig, siginfo_t *si, void *unused)
{

/* Note: calling printf() from a signal handler is not safe
(and should not be done in production programs), since
printf() is not async-signal-safe; see signal-safety(7).
Nevertheless, we use printf() here as a simple way of
showing that the handler was called. */

printf("Got SIGSEGYV at address: %p\n", si->si_addr);

exit(EXIT_FAILURE);

}

int

main(int argc, char *argv[])
{

int pagesize;

struct sigaction sa;

sa.sa_flags = SA_SIGINFO;

sigemptyset(&sa.sa_mask);

sa.sa_sigaction = handler;

if (sigaction(SIGSEGV, &sa, NULL) == -1)
handle_error("sigaction™);

pagesize = sysconf(_SC_PAGE_SIZE);

if (pagesize == -1)
handle_error("sysconf");

/* Allocate a buffer aligned on a page boundary;

Page 5/6

initial protection is PROT_READ | PROT_WRITE */
buffer = memalign(pagesize, 4 * pagesize);
if (buffer == NULL)
handle_error("memalign™);
printf("Start of region: %p\n", buffer);
if (mprotect(buffer + pagesize * 2, pagesize,
PROT_READ) == -1)
handle_error("mprotect");
for (char *p = buffer ; ;)
*(p++) =&
printf("Loop completed\n); /* Should never happen */
exit(EXIT_SUCCESS);
}
SEE ALSO
mmap(2), sysconf(3), pkeys(7)
COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A
description of the project, information about reporting bugs, and the
latest version of this page, can be found at
https://lwww.kernel.org/doc/man-pages/.

Linux 2020-11-01 MPROTECT(2)

Page 6/6

