r“‘ .

University

FPDF Library

Red H at PDF generator;
Enterprise Linux

Manual Pages

A

Full credit is given to the above companies including the 0S
that this PDF file was generated!

Red Hat Enterprise Linux Release 9.2 Manual Pages on 'podman-run.1' command
$ man podman-run.1
podman-run(1) General Commands Manual podman-run(1)
NAME
podman-run - Run a command in a new container
SYNOPSIS
podman run [options] image [command [arg ...]]
podman container run [options] image [command [arg ...]]
DESCRIPTION
Run a process in a new container. podman run starts a process with its
own file system, its own networking, and its own isolated process tree.
The image which starts the process may define defaults related to the
process that will be run in the container, the networking to expose,
and more, but podman run gives final control to the operator or admin?
istrator who starts the container from the image. For that reason pod?
man run has more options than any other Podman command.
If the image is not already loaded then podman run will pull the image,
and all image dependencies, from the repository in the same way running
podman pull image , before it starts the container from that image.
Several files will be automatically created within the container. These
include /etc/hosts, /etc/hostname, and /etc/resolv.conf to manage net?
working. These will be based on the host's version of the files,
though they can be customized with options (for example, --dns will
override the host's DNS servers in the created resolv.conf). Addition?

ally, a container environment file is created in each container to in? Page 1/59

dicate to programs they are running in a container. This file is [0?
cated at /run/.containerenv. When using the --privileged flag the .con?
tainerenv contains name/value pairs indicating the container engine
version, whether the engine is running in rootless mode, the container
name and id, as well as the image name and id that the container is
based on.
When running from a user defined network namespace, the
/etc/netns/INSNAME/resolv.conf will be used if it exists, otherwise
/etc/resolv.conf will be used.
Default settings are defined in containers.conf. Most settings for re?
mote connections use the servers containers.conf, except when docu?
mented in man pages.
IMAGE
The image is specified using transport:path format. If no transport is
specified, the docker (container registry) transport will be used by
default. For remote Podman, including Mac and Windows (excluding WSL2)
machines, docker is the only allowed transport.
dir:path
An existing local directory path storing the manifest, layer tarballs

and signatures as individual files. This is a hon-standardized format,
primarily useful for debugging or noninvasive container inspection.

$ podman save --format docker-dir fedora -o /tmp/fedora

$ podman run dir:/tmp/fedora echo hello
docker://docker-reference (Default)

An image reference stored in a remote container image registry. Exam?

ple: "quay.io/podman/stable:latest”. The reference can include a path
to a specific registry; if it does not, the registries listed in reg?
istries.conf will be queried to find a matching image. By default,
credentials from podman login (stored at $XDG_RUNTIME_DIR/contain?
ers/auth.json by default) will be used to authenticate; otherwise it
falls back to using credentials in $HOME/.docker/config.json.

$ podman run registry.fedoraproject.org/fedora:latest echo hello

docker-archive:path[:docker-reference] An image stored in the docker Page 2/59

save formatted file. docker-reference is only used when creating such a
file, and it must not contain a digest.
$ podman save --format docker-archive fedora -o /tmp/fedora
$ podman run docker-archive:/tmp/fedora echo hello
docker-daemon:docker-reference
An image in docker-reference format stored in the docker daemon in?
ternal storage. The docker-reference can also be an image ID (docker-
daemon:algo:digest).
$ sudo docker pull fedora
$ sudo podman run docker-daemon:docker.io/library/fedora echo hello
oci-archive:path:tag
An image in a directory compliant with the "Open Container Image Lay?
out Specification" at the specified path and specified with a tag.
$ podman save --format oci-archive fedora -o /tmp/fedora
$ podman run oci-archive:/tmp/fedora echo hello
OPTIONS
--add-host=host:ip
Add a custom host-to-IP mapping (host:ip)
Add a line to /etc/hosts. The format is hostname:ip. The --add-host op?
tion can be set multiple times. Conflicts with the --no-hosts option.
--annotation=key=value
Add an annotation to the container. This option can be set multiple
times.
--arch=ARCH
Override the architecture, defaults to hosts, of the image to be
pulled. For example, arm. Unless overridden, subsequent lookups of the
same image in the local storage will match this architecture, regard?
less of the host.
--attach, -a=stdin | stdout | stderr
Attach to STDIN, STDOUT or STDERR.
In foreground mode (the default when -d is not specified), podman run
can start the process in the container and attach the console to the

process's standard input, output, and error. It can even pretend to be

Page 3/59

a TTY (this is what most command-line executables expect) and pass
along signals. The -a option can be set for each of stdin, stdout, and
stderr.
--authfile=path
Path of the authentication file. Default is ${XDG_RUNTIME_DIR}/contain?
ers/auth.json, which is set using podman login. If the authorization
state is not found there, SHOME/.docker/config.json is checked, which
is set using docker login.
Note: There is also the option to override the default path of the au?
thentication file by setting the REGISTRY_AUTH_FILE environment vari?
able. This can be done with export REGISTRY_AUTH_FILE=path.
--blkio-weight=weight
Block 10 relative weight. The weight is a value between 10 and 1000.
This option is not supported on cgroups V1 rootless systems.
--blkio-weight-device=device:weight
Block 10 relative device weight.
--cap-add=capability
Add Linux capabilities.
--cap-drop=capability
Drop Linux capabilities.
--cgroup-conf=KEY=VALUE
When running on cgroup v2, specify the cgroup file to write to and its
value. For example --cgroup-conf=memory.high=1073741824 sets the mem?
ory.high limit to 1GB.
--cgroup-parent=path
Path to cgroups under which the cgroup for the container will be cre?
ated. If the path is not absolute, the path is considered to be rela?
tive to the cgroups path of the init process. Cgroups will be created
if they do not already exist.
--cgroupns=mode
Set the cgroup namespace mode for the container.
? host: use the host's cgroup hamespace inside the container.

? container:id: join the namespace of the specified container. Page 4/59

? private: create a new cgroup namespace.
? ns:path: join the namespace at the specified path.

If the host uses cgroups v1, the default is set to host. On cgroups v2,
the default is private.

--cgroups=how
Determines whether the container will create CGroups.
Default is enabled.
The enabled option will create a new cgroup under the cgroup-parent.
The disabled option will force the container to not create CGroups, and
thus conflicts with CGroup options (--cgroupns and --cgroup-parent).
The no-conmon option disables a new CGroup only for the conmon process.
The split option splits the current CGroup in two sub-cgroups: one for
conmon and one for the container payload. It is not possible to set
--cgroup-parent with split.

--chrootdirs=path
Path to a directory inside the container that should be treated as a
chroot directory. Any Podman managed file (e.g., /etc/resolv.conf,
/etc/hosts, etc/hostname) that is mounted into the root directory will
be mounted into that location as well. Multiple directories should be
separated with a comma.

--cidfile=file
Write the container ID to file. The file will be removed along with
the container.

--conmon-pidfile=file
Write the pid of the conmon process to a file. As conmon runs in a sep?
arate process than Podman, this is necessary when using systemd to
restart Podman containers. (This option is not available with the re?
mote Podman client, including Mac and Windows (excluding WSL2) ma?
chines)

--cpu-period=limit
Set the CPU period for the Completely Fair Scheduler (CFS), which is a
duration in microseconds. Once the container's CPU quota is used up, it

will not be scheduled to run until the current period ends. Defaults to Page 5/59

100000 microseconds.

On some systems, changing the resource limits may not be allowed for

non-root users. For more details, see https://github.com/contain?

ers/podman/blob/main/troubleshooting.md#26-running-containers-with-re?

source-limits-fails-with-a-permissions-error

This option is not supported on cgroups V1 rootless systems.
--Cpu-quota=limit

Limit the CPU Completely Fair Scheduler (CFS) quota.

Limit the container's CPU usage. By default, containers run with the

full CPU resource. The limit is a number in microseconds. If a number

is provided, the container will be allowed to use that much CPU time

until the CPU period ends (controllable via --cpu-period).

On some systems, changing the resource limits may not be allowed for

non-root users. For more details, see https://github.com/contain?

ers/podman/blob/main/troubleshooting.md#26-running-containers-with-re?

source-limits-fails-with-a-permissions-error

This option is not supported on cgroups V1 rootless systems.
--cpu-rt-period=microseconds

Limit the CPU real-time period in microseconds.

Limit the container's Real Time CPU usage. This option tells the kernel

to restrict the container's Real Time CPU usage to the period speci?

fied.

This option is only supported on cgroups V1 rootful systems.
--Ccpu-rt-runtime=microseconds

Limit the CPU real-time runtime in microseconds.

Limit the containers Real Time CPU usage. This option tells the kernel

to limit the amount of time in a given CPU period Real Time tasks may

consume. Ex: Period of 1,000,000us and Runtime of 950,000us means that

this container could consume 95% of available CPU and leave the remain?

ing 5% to normal priority tasks.

The sum of all runtimes across containers cannot exceed the amount al?

lotted to the parent cgroup.

This option is only supported on cgroups V1 rootful systems. Page 6/59

--cpu-shares, -c=shares
CPU shares (relative weight).
By default, all containers get the same proportion of CPU cycles. This
proportion can be modified by changing the container's CPU share
weighting relative to the combined weight of all the running contain?
ers. Default weight is 1024.
The proportion will only apply when CPU-intensive processes are run?
ning. When tasks in one container are idle, other containers can use
the left-over CPU time. The actual amount of CPU time will vary depend?
ing on the number of containers running on the system.
For example, consider three containers, one has a cpu-share of 1024 and
two others have a cpu-share setting of 512. When processes in all three
containers attempt to use 100% of CPU, the first container would re?
ceive 50% of the total CPU time. If a fourth container is added with a
cpu-share of 1024, the first container only gets 33% of the CPU. The
remaining containers receive 16.5%, 16.5% and 33% of the CPU.
On a multi-core system, the shares of CPU time are distributed over all
CPU cores. Even if a container is limited to less than 100% of CPU
time, it can use 100% of each individual CPU core.
For example, consider a system with more than three cores. If the con?
tainer CO is started with --cpu-shares=512 running one process, and an?
other container C1 with --cpu-shares=1024 running two processes, this

can result in the following division of CPU shares:

PPV 7?7?7??7?7?7??7??77?77?77?

?PID ? container ? CPU ? CPU share ?

PPV 7?7??7?7?7?7??77?77?77?

?100 ? CO ?0 ?100% of CPUO ?

PPV 7?7??7?7?7?7??77?77?7?7

?101?C1 ?1 ?100% of CPUL ?

PPV 7?7?7?77?7?7?7?7??77?77?7?7

?1027?C1 ?2 ?100% of CPU2 ?

PPV 7?7?7?77?7?7?7?7??77?77?7?7

On some systems, changing the resource limits may not be allowed for Page 7/59

non-root users. For more details, see https://github.com/contain?

ers/podman/blob/main/troubleshooting.md#26-running-containers-with-re?

source-limits-fails-with-a-permissions-error

This option is not supported on cgroups V1 rootless systems.
--cpus=number

Number of CPUs. The default is 0.0 which means no limit. This is short?

hand for --cpu-period and --cpu-quota, therefore the option cannot be

specified with --cpu-period or --cpu-quota.

On some systems, changing the CPU limits may not be allowed for non-

root users. For more details, see https://github.com/containers/pod?

man/blob/main/troubleshooting.md#26-running-containers-with-resource-

limits-fails-with-a-permissions-error

This option is not supported on cgroups V1 rootless systems.
--cpuset-cpus=number

CPUs in which to allow execution. Can be specified as a comma-separated

list (e.g. 0,1), as arange (e.g. 0-3), or any combination thereof

(e.g. 0-3,7,11-15).

On some systems, changing the resource limits may not be allowed for

non-root users. For more details, see https://github.com/contain?

ers/podman/blob/main/troubleshooting.md#26-running-containers-with-re?

source-limits-fails-with-a-permissions-error

This option is not supported on cgroups V1 rootless systems.
--cpuset-mems=nodes

Memory nodes (MEMSs) in which to allow execution (0-3, 0,1). Only effec?

tive on NUMA systems.

If there are four memory nodes on the system (0-3), use --cpuset-

mems=0,1 then processes in the container will only use memory from the

first two memory nodes.

On some systems, changing the resource limits may not be allowed for

non-root users. For more details, see https://github.com/contain?

ers/podman/blob/main/troubleshooting.md#26-running-containers-with-re?

source-limits-fails-with-a-permissions-error

This option is not supported on cgroups V1 rootless systems. Page 8/59

--decryption-key=key[:passphrase]

The [key[:passphrase]] to be used for decryption of images. Key can
point to keys and/or certificates. Decryption will be tried with all
keys. If the key is protected by a passphrase, it is required to be

passed in the argument and omitted otherwise.

--detach, -d

Detached mode: run the container in the background and print the new
container ID. The default is false.

At any time run podman ps in the other shell to view a list of the run?
ning containers. Reattach to a detached container with podman attach
command.

When attached via tty mode, detach from the container (and leave it
running) using a configurable key sequence. The default sequence is
ctrl-p,ctrl-q. Specify the key sequence using the --detach-keys op?
tion, or configure it in the containers.conf file: see contain?

ers.conf(5) for more information.

--detach-keys=sequence

Specify the key sequence for detaching a container. Format is a single
character [a-Z] or one or more ctrl-<value> characters where <value> is
one of: a-z, @, *, [, , or _. Specifying " will disable this feature.

The default is ctrl-p,ctrl-q.

This option can also be set in containers.conf(5) file.

--device=host-device[:container-device][:permissions]

Add a host device to the container. Optional permissions parameter can
be used to specify device permissions by combining r for read, w for
write, and m for mknod(2).

Example: --device=/dev/sdc:/dev/xvdc:rwm.

Note: if host-device is a symbolic link then it will be resolved first.

The container will only store the major and minor numbers of the host
device.

Podman may load kernel modules required for using the specified device.
The devices that Podman will load modules for when necessary are:

/dev/fuse.

Page 9/59

In rootless mode, the new device is bind mounted in the container from
the host rather than Podman creating it within the container space. Be?
cause the bind mount retains its SELinux label on SELinux systems, the
container can get permission denied when accessing the mounted device.
Modify SELinux settings to allow containers to use all device labels
via the following command:
$ sudo setsebool -P container_use_devices=true
Note: if the user only has access rights via a group, accessing the de?
vice from inside a rootless container will fail. Use the --group-add
keep-groups flag to pass the user's supplementary group access into the
container.
--device-cgroup-rule="type major:minor mode"
Add a rule to the cgroup allowed devices list. The rule is expected to
be in the format specified in the Linux kernel documentation (Documen?
tation/cgroup-vl/devices.ixt):
- type: a (all), ¢ (char), or b (block);
- major and minor: either a number, or * for all;
- mode: a composition of r (read), w (write), and m (mknod(2)).
--device-read-bps=path:rate
Limit read rate (in bytes per second) from a device (e.g. --device-
read-bps=/dev/sda:1mb).
On some systems, changing the resource limits may not be allowed for
non-root users. For more details, see https://github.com/contain?
ers/podman/blob/main/troubleshooting.md#26-running-containers-with-re?
source-limits-fails-with-a-permissions-error
This option is not supported on cgroups V1 rootless systems.
--device-read-iops=path:rate
Limit read rate (in 1O operations per second) from a device (e.g. --de?
vice-read-iops=/dev/sda:1000).
On some systems, changing the resource limits may not be allowed for
non-root users. For more details, see https://github.com/contain?
ers/podman/blob/main/troubleshooting.md#26-running-containers-with-re?

source-limits-fails-with-a-permissions-error Page 10/59

This option is not supported on cgroups V1 rootless systems.
--device-write-bps=path:rate
Limit write rate (in bytes per second) to a device (e.g. --device-
write-bps=/dev/sda:1mb).
On some systems, changing the resource limits may not be allowed for
non-root users. For more details, see https://github.com/contain?
ers/podman/blob/main/troubleshooting.md#26-running-containers-with-re?
source-limits-fails-with-a-permissions-error
This option is not supported on cgroups V1 rootless systems.
--device-write-iops=path:rate
Limit write rate (in 10 operations per second) to a device (e.g. --de?
vice-write-iops=/dev/sda:1000).
On some systems, changing the resource limits may not be allowed for
non-root users. For more details, see https://github.com/contain?
ers/podman/blob/main/troubleshooting.md#26-running-containers-with-re?
source-limits-fails-with-a-permissions-error
This option is not supported on cgroups V1 rootless systems.
--disable-content-trust
This is a Docker-specific option to disable image verification to a
container registry and is not supported by Podman. This option is a
NOOP and provided solely for scripting compatibility.
--dns=ipaddr
Set custom DNS servers.
This option can be used to override the DNS configuration passed to the
container. Typically this is necessary when the host DNS configuration
is invalid for the container (e.g., 127.0.0.1). When this is the case
the --dns flag is necessary for every run.
The special value none can be specified to disable creation of /etc/re?
solv.conf in the container by Podman. The /etc/resolv.conf file in the
image will be used without changes.
This option cannot be combined with --network that is set to none or
container:id.

--dns-option=option Page 11/59

Set custom DNS options. Invalid if using --dns-option with --network
that is set to none or container:id.
--dns-search=domain
Set custom DNS search domains. Invalid if using --dns-search with
--network that is set to none or container:id. Use --dns-search=. to
remove the search domain.
--entrypoint="command" | '['command"”, argl, ...]
Override the default ENTRYPOINT from the image.
The ENTRYPOINT of an image is similar to a COMMAND because it specifies
what executable to run when the container starts, but it is (purposely)
more difficult to override. The ENTRYPOINT gives a container its de?
fault nature or behavior. When the ENTRYPOINT is set, the container
runs as if it were that binary, complete with default options. More op?
tions can be passed in viathe COMMAND. But, if a user wants to run
something else inside the container, the --entrypoint option allows a
new ENTRYPOINT to be specified.
Specify multi option commands in the form of a json string.
--env, -e=env
Set environment variables.
This option allows arbitrary environment variables that are available
for the process to be launched inside of the container. If an environ?
ment variable is specified without a value, Podman will check the host
environment for a value and set the variable only if it is set on the
host. As a special case, if an environment variable ending in * is
specified without a value, Podman will search the host environment for
variables starting with the prefix and will add those variables to the
container.
See Environment ?#environment? note below for precedence and examples.
--env-file=file
Read in a line-delimited file of environment variables.
See Environment ?#environment? note below for precedence and examples.
--env-host

Use host environment inside of the container. See Environment note be? Page 12/59

low for precedence. (This option is not available with the remote Pod?
man client, including Mac and Windows (excluding WSL2) machines)
--env-merge=env
Preprocess default environment variables for the containers. For exam?
ple if image contains environment variable hello=world user can prepro?
cess it using --env-merge hello=${hello}-some so new value will be
hello=world-some.
--expose=port
Expose a port, or a range of ports (e.g. --expose=3300-3310) to set up
port redirection on the host system.

--gidmap=container_gid:host_gid:amount

Run the container in a new user namespace using the supplied GID map?

ping. This option conflicts with the --userns and --subgidname options.

This option provides a way to map host GIDs to container GIDs in the

same way as --uidmap maps host UIDs to container UIDs. For details see

--uidmap.
Note: the --gidmap flag cannot be called in conjunction with the --pod
flag as a gidmap cannot be set on the container level when in a pod.
--group-add=group | keep-groups
Assign additional groups to the primary user running within the con?
tainer process.
? keep-groups is a special flag that tells Podman to keep the
supplementary group access.
Allows container to use the user's supplementary group access. If file
systems or devices are only accessible by the rootless user's group,
this flag tells the OCI runtime to pass the group access into the con?
tainer. Currently only available with the crun OCI runtime. Note: keep-

groups is exclusive, other groups cannot be specified with this flag.

(Not available for remote commands, including Mac and Windows (exclud?

ing WSL2) machines)
--health-cmd="command" | ['command", argl, ...]
Set or alter a healthcheck command for a container. The command is a

command to be executed inside the container that determines the con?

Page 13/59

tainer health. The command is required for other healthcheck options to
be applied. A value of none disables existing healthchecks.
Multiple options can be passed in the form of a JSON array; otherwise,
the command will be interpreted as an argument to /bin/sh -c.
--health-interval=interval
Set an interval for the healthchecks. An interval of disable results in
no automatic timer setup. The default is 30s.
--health-on-failure=action
Action to take once the container transitions to an unhealthy state.
The default is none.
? none: Take no action.
? kill: Kill the container.
? restart: Restart the container. Do not combine the restart
action with the --restart flag. When running inside of a sys?
temd unit, consider using the kill or stop action instead to
make use of systemd's restart policy.
? stop: Stop the container.
--health-retries=retries
The number of retries allowed before a healthcheck is considered to be
unhealthy. The default value is 3.
--health-start-period=period
The initialization time needed for a container to bootstrap. The value
can be expressed in time format like 2m3s. The default value is Os.
--health-startup-cmd="command" | ["command", argl, ...]
Set a startup healthcheck command for a container. This command will be
executed inside the container and is used to gate the regular
healthcheck. When the startup command succeeds, the regular healthcheck
will begin and the startup healthcheck will cease. Optionally, if the
command fails for a set number of attempts, the container will be
restarted. A startup healthcheck can be used to ensure that containers
with an extended startup period are not marked as unhealthy until they
are fully started. Startup healthchecks can only be used when a regular

healthcheck (from the container's image or the --health-cmd option) is

Page 14/59

also set.
--health-startup-interval=interval
Set an interval for the startup healthcheck. An interval of disable re?
sults in no automatic timer setup. The default is 30s.
--health-startup-retries=retries
The number of attempts allowed before the startup healthcheck restarts
the container. If set to 0, the container will never be restarted. The
default is O.
--health-startup-success=retries
The number of successful runs required before the startup healthcheck
will succeed and the regular healthcheck will begin. A value of 0 means
that any success will begin the regular healthcheck. The default is 0.
--health-startup-timeout=timeout
The maximum time a startup healthcheck command has to complete before
it is marked as failed. The value can be expressed in a time format
like 2m3s. The default value is 30s.
--health-timeout=timeout
The maximum time allowed to complete the healthcheck before an interval
is considered failed. Like start-period, the value can be expressed in
a time format such as 1m22s. The default value is 30s.
--help
Print usage statement
--hostname, -h=name
Container host name
Sets the container host name that is available inside the container.
Can only be used with a private UTS namespace --uts=private (default).
If --pod is specified and the pod shares the UTS namespace (default)
the pod's hostname will be used.
--hostuser=name
Add a user account to /etc/passwd from the host to the container. The
Username or UID must exist on the host system.
--http-proxy

By default proxy environment variables are passed into the container if

Page 15/59

set for the Podman process. This can be disabled by setting the value
to false. The environment variables passed in include http_proxy,
https_proxy, ftp_proxy, no_proxy, and also the upper case versions of
those. This option is only needed when the host system must use a proxy
but the container should not use any proxy. Proxy environment variables
specified for the container in any other way will override the values

that would have been passed through from the host. (Other ways to spec?
ify the proxy for the container include passing the values with the

--env flag, or hard coding the proxy environment at container build
time.) When used with the remote client it will use the proxy environ?
ment variables that are set on the server process.

Defaults to true.

--image-volume=bind | tmpfs | ignore

Tells Podman how to handle the builtin image volumes. Default is bind.
? bind: An anonymous named volume will be created and mounted
into the container.
? tmpfs: The volume is mounted onto the container as a tmpfs,
which allows the users to create content that disappears when
the container is stopped.

? ignore: All volumes are just ignored and no action is taken.

--init

Run an init inside the container that forwards signals and reaps pro?
cesses. The container-init binary is mounted at /run/podman-init.

Mounting over /run will hence break container execution.

--init-path=path

Path to the container-init binary.

--interactive, -i

When set to true, keep stdin open even if not attached. The default is

false.

--ip=ipv4

Specify a static IPv4 address for the container, for example
10.88.64.128. This option can only be used if the container is joined

to only a single network - i.e., --network=network-name is used at most

Page 16/59

once - and if the container is not joining another container's network
namespace via --network=container:id. The address must be within the
network's IP address pool (default 10.88.0.0/16).
To specify multiple static IP addresses per container, set multiple
networks using the --network option with a static IP address specified
for each using the ip mode for that option.
--ip6=ipv6
Specify a static IPv6 address for the container, for example
fd46:db93:aa76:ac37::10. This option can only be used if the container
is joined to only a single network - i.e., --network=network-name is
used at most once - and if the container is not joining another con?
tainer's network namespace via --network=container:id. The address
must be within the network's IPv6 address pool.
To specify multiple static IPv6 addresses per container, set multiple
networks using the --network option with a static IPv6 address speci?
fied for each using the ip6 mode for that option.
--ipc=ipc
Set the IPC namespace mode for a container. The default is to create a
private IPC namespace.
? "™ Use Podman's default, defined in containers.conf.
? container:id: reuses another container's shared memory, sema?
phores, and message queues
? host: use the host's shared memory, semaphores, and message
gueues inside the container. Note: the host mode gives the
container full access to local shared memory and is therefore
considered insecure.
? none: private IPC namespace, with /dev/shm not mounted.
? ns:path: path to an IPC namespace to join.
? private: private IPC namespace.
? shareable: private IPC namespace with a possibility to share
it with other containers.
--label, -I=key=value

Add metadata to a container. Page 17/59

--label-file=file
Read in a line-delimited file of labels.
--link-local-ip=ip
Not implemented.
--log-driver=driver
Logging driver for the container. Currently available options are k8s-
file, journald, none and passthrough, with json-file aliased to k8s-
file for scripting compatibility. (Default journald).
The podman info command below will display the default log-driver for
the system.
$ podman info --format {{ .Host.LogDriver }}'
journald
The passthrough driver passes down the standard streams (stdin, stdout,
stderr) to the container. Itis not allowed with the remote Podman
client, including Mac and Windows (excluding WSL2) machines, and on a
tty, since it is vulnerable to attacks via TIOCSTI.
--log-opt=name=value
Logging driver specific options.
Set custom logging configuration. The following *name*s are supported:
path: specify a path to the log file
(e.g. --log-opt path=/var/log/container/mycontainer.json);
max-size: specify a max size of the log file
(e.g. --log-opt max-size=10mb);
tag: specify a custom log tag for the container
(e.g. --log-opt tag="{{.ImageName}}". It supports the same keys as
podman inspect --format. This option is currently supported only by
the journald log driver.
--mac-address=address
Container network interface MAC address (e.g. 92:d0:¢6:0a:29:33) This
option can only be used if the container is joined to only a single
network - i.e., --network=network-name is used at most once - and if
the container is not joining another container's network namespace via

--network=container:id. Page 18/59

Remember that the MAC address in an Ethernet network must be unique.
The IPv6 link-local address will be based on the device's MAC address
according to RFC4862.
To specify multiple static MAC addresses per container, set multiple
networks using the --network option with a static MAC address specified
for each using the mac mode for that option.
--memory, -m=number[unit]
Memory limit. A unit can be b (bytes), k (kibibytes), m (mebibytes), or
g (gibibytes).
Allows the memory available to a container to be constrained. If the
host supports swap memory, then the -m memory setting can be larger
than physical RAM. If a limit of O is specified (not using -m), the
container's memory is not limited. The actual limit may be rounded up
to a multiple of the operating system's page size (the value would be
very large, that's millions of trillions).
This option is not supported on cgroups V1 rootless systems.
--memory-reservation=number[unit]
Memory soft limit. A unit can be b (bytes), k (kibibytes), m
(mebibytes), or g (gibibytes).
After setting memory reservation, when the system detects memory con?
tention or low memory, containers are forced to restrict their consump?
tion to their reservation. So always set the value below --memory, oth?
erwise the hard limit will take precedence. By default, memory reserva?
tion will be the same as memory limit.
This option is not supported on cgroups V1 rootless systems.
--memory-swap=number[unit]
A limit value equal to memory plus swap. A unit can be b (bytes), k
(kibibytes), m (mebibytes), or g (gibibytes).
Must be used with the -m (--memory) flag. The argument value should
always be larger than that of
-m (--memory) By default, it is set to double the value of --memory.
Set number to -1 to enable unlimited swap.

This option is not supported on cgroups V1 rootless systems. Page 19/59

--memory-swappiness=number
Tune a container's memory swappiness behavior. Accepts an integer be?
tween 0 and 100.
This flag is only supported on cgroups V1 rootful systems.
--mount=type=TYPE, TYPE-SPECIFIC-OPTION],...]
Attach a filesystem mount to the container
Current supported mount TYPEs are bind, volume, image, tmpfs and de?
vpts. [1] ?#Footnotel?
e.g.
type=bind,source=/path/on/host,destination=/path/in/container
type=bind,src=/path/on/host,dst=/path/in/container,relabel=shared
type=bind,src=/path/on/host,dst=/path/in/container,relabel=shared,U=true
type=volume,source=voll,destination=/path/in/container,ro=true
type=tmpfs,tmpfs-size=512M,destination=/path/in/container
type=image,source=fedora,destination=/fedora-image,rw=true
type=devpts,destination=/dev/pts
Common Options:
? src, source: mount source spec for bind and volume. Mandatory for bind.
? dst, destination, target: mount destination spec.
Options specific to volume:
? ro, readonly: true or false (default).
. U, chown: true or false (default). Change recursively the owner and group of the source volume based on the
UID and GID of the container.
? idmap: true or false (default). If specified, create an idmapped mount to the target user namespace in the
container.
The idmap option supports a custom mapping that can be different than the user namespace used by the
container.
The mapping can be specified after the idmap option like: “idmap=uids=0-1-10#10-11-10;gids=0-100-10". For
each triplet, the first value is the
start of the backing file system IDs that are mapped to the second value on the host. The length of this
mapping is given in the third value.
Multiple ranges are separated with #.

Options specific to image: Page 20/59

? rw, readwrite: true or false (default).
Options specific to bind:
? ro, readonly: true or false (default).
? bind-propagation: shared, slave, private, unbindable, rshared, rslave, runbindable, or rprivate(default). See
also mount(2).
. bind-nonrecursive: do not set up a recursive bind mount. By default it is recursive.
. relabel: shared, private.
? idmap: true or false (default). If specified, create an idmapped mount to the target user namespace in the
container.
. U, chown: true or false (default). Change recursively the owner and group of the source volume based on the
UID and GID of the container.
Options specific to tmpfs:
? ro, readonly: true or false (default).
? tmpfs-size: Size of the tmpfs mount in bytes. Unlimited by default in Linux.
? tmpfs-mode: File mode of the tmpfs in octal. (e.g. 700 or 0700.) Defaults to 1777 in Linux.
? tmpcopyup: Enable copyup from the image directory at the same location to the tmpfs. Used by default.
? notmpcopyup: Disable copying files from the image to the tmpfs.
. U, chown: true or false (default). Change recursively the owner and group of the source volume based on the
UID and GID of the container.
Options specific to devpts:
? uid: UID of the file owner (default 0).
? gid: GID of the file owner (default 0).
? mode: permission mask for the file (default 600).
? max: maximum number of PTYs (default 1048576).
--name=name
Assign a name to the container.
The operator can identify a container in three ways:
? UUID long identifier
(?f78375b1c487e03c9438c729345e54db9d20cfa2ac1fc3494b6eb60872e74778%);
? UUID short identifier (?f78375b1c4877?);
? Name (?jonah?).
Podman generates a UUID for each container, and if a name is not as?

signed to the container with --name then it will generate a random Page 21/59

string name. The name can be useful as a more human-friendly way to
identify containers. This works for both background and foreground
containers.

--network=mode, --net
Set the network mode for the container.
Valid mode values are:

? bridge[:OPTIONS,...]: Create a network stack on the default
bridge. This is the default for rootful containers. It is pos?
sible to specify these additional options:

? alias=name: Add network-scoped alias for the container.

? ip=IPv4: Specify a static ipv4 address for this container.

? ip=IPv6: Specify a static ipv6 address for this container.

? mac=MAC: Specify a static mac address for this container.

? interface_name: Specify a name for the created network in?
terface inside the container.

For example to set a static ipv4 address and a static mac ad?

dress, use --network bridge:ip=10.88.0.10,mac=44:33:22:11:00:99.

? <network name or ID>[:OPTIONS,...]: Connect to a user-defined
network; this is the network name or ID from a network created
by podman network create. Using the network name implies the
bridge network mode. Itis possible to specify the same op?
tions described under the bridge mode above. Use the --network
option multiple times to specify additional networks.

? none: Create a network namespace for the container but do not
configure network interfaces for it, thus the container has no
network connectivity.

? container:id: Reuse another container's network stack.

? host: Do not create a network namespace, the container will
use the host's network. Note: The host mode gives the con?
tainer full access to local system services such as D-bus and
is therefore considered insecure.

? ns:path: Path to a network namespace to join.

? private: Create a new namespace for the container. This will Page 22/59

use the bridge mode for rootful containers and slirp4netns for

rootless ones.

? slirp4netns[:OPTIONS,...]: use slirp4netns(1) to create a user
network stack. This is the default for rootless containers. It

is possible to specify these additional options, they can also

be set with network_cmd_options in containers.conf:

? allow_host_loopback=true|false: Allow slirp4netns to reach
the host loopback IP (default is 10.0.2.2 or the second IP
from slirp4netns cidr subnet when changed, see the cidr op?
tion below). The default is false.

? mtu=MTU: Specify the MTU to use for this network. (Default
is 65520).

? cidr=CIDR: Specify ip range to use for this network. (De?
fault is 10.0.2.0/24).

? enable_ipv6=truelfalse: Enable IPv6. Default is true. (Re?

quired for outbound_addr6).

? outbound_addr=INTERFACE: Specify the outbound interface

slirp should bind to (ipv4 traffic only).
? outbound_addr=IPv4: Specify the outbound ipv4 address slirp

should bind to.

? outbound_addr6=INTERFACE: Specify the outbound interface

slirp should bind to (ipv6 traffic only).

? outbound_addr6=IPv6: Specify the outbound ipv6 address slirp
should bind to.

? port_handler=rootlesskit: Use rootlesskit for port forward?
ing. Default. Note: Rootlesskit changes the source IP ad?
dress of incoming packets to an IP address in the container
network namespace, usually 10.0.2.100. If the application
requires the real source IP address, e.g. web server logs,
use the slirp4netns port handler. The rootlesskit port han?
dler is also used for rootless containers when connected to
user-defined networks.

? port_handler=slirp4netns: Use the slirp4netns port forward?

Page 23/59

ing, it is slower than rootlesskit but preserves the correct
source IP address. This port handler cannot be used for
user-defined networks.
? pasta[:OPTIONS,...]: use pasta(l) to create a user-mode net?

working stack.

This is only supported in rootless mode.

By default, IPv4 and IPv6 addresses and routes, as well as the

pod interface name, are copied from the host. If port forward?

ing isn't configured, ports will be forwarded dynamically as

services are bound on either side (init namespace or container

namespace). Port forwarding preserves the original source IP

address. Options described in pasta(l) can be specified as

comma-separated arguments.

In terms of pasta(1) options, --config-net is given by de?

fault, in order to configure networking when the container is

started, and --no-map-gw is also assumed by default, to avoid

direct access from container to host using the gateway ad?

dress. The latter can be overridden by passing --map-gw in the

pasta-specific options (despite not being an actual pasta(1)

option).

Also, -t none and -u none are passed if, respectively, no TCP

or UDP port forwarding from host to container is configured,

to disable automatic port forwarding based on bound ports.

Similarly, -T none and -U none are given to disable the same

functionality from container to host.

Some examples:

? pasta:--map-gw: Allow the container to directly reach the
host using the gateway address.

? pasta:--mtu,1500: Specify a 1500 bytes MTU for the tap in?
terface in the container.

? pasta:--ipv4-only,-a,10.0.2.0,-n,24,-g,10.0.2.2,--dns-for?
ward,10.0.2.3,-m,1500,--no-ndp,--no-dhcpv6,--no-dhcp, equiv?

alent to default slirp4netns(1) options: disable IPv6, as? Page 24/59

sign 10.0.2.0/24 to the tapO interface in the container,

with gateway 10.0.2.3, enable DNS forwarder reachable at
10.0.2.3, set MTU to 1500 bytes, disable NDP, DHCPv6 and
DHCP support.

? pasta:-l,tap0,--ipv4-only,-a,10.0.2.0,-n,24,-9,10.0.2.2,--dns-
forward,10.0.2.3,--no-ndp,--no-dhcpv6,--no-dhcp, equivalent
to default slirp4netns(1) options with Podman overrides:
same as above, but leave the MTU to 65520 bytes

? pasta:-t,auto,-u,auto,-T,auto,-U,auto: enable automatic port
forwarding based on observed bound ports from both host and
container sides

? pasta:-T,5201: enable forwarding of TCP port 5201 from con?
tainer to host, using the loopback interface instead of the
tap interface for improved performance

NOTE: For backward compatibility reasons, if there is an exist?
ing network named pasta, Podman will use it instead of the pasta
mode."?
Invalid if using --dns, --dns-option, or --dns-search with --network
set to none or container:id.
If used together with --pod, the container will not join the pod's net?
work namespace.
--network-alias=alias
Add a network-scoped alias for the container, setting the alias for all
networks that the container joins. To set a name only for a specific
network, use the alias option as described under the --network option.
If the network has DNS enabled (podman network inspect -f {{ DNSEn?
abled}} <name>), these aliases can be used for name resolution on the
given network. This option can be specified multiple times. NOTE: When
using CNI a container will only have access to aliases on the first
network that it joins. This limitation does not exist with ne?
tavark/aardvark-dns.
--no-healthcheck

Disable any defined healthchecks for container.

Page 25/59

--no-hosts
Do not create /etc/hosts for the container. By default, Podman will
manage /etc/hosts, adding the container's own IP address and any hosts
from --add-host. --no-hosts disables this, and the image's /etc/hosts
will be preserved unmodified.
This option conflicts with --add-host.
--oom-kill-disable
Whether to disable OOM Killer for the container or not.
This flag is not supported on cgroups V2 systems.
--oom-score-adj=num
Tune the host's OOM preferences for containers (accepts values from
-1000 to 1000).
--0s=0S
Override the OS, defaults to hosts, of the image to be pulled. For ex?
ample, windows. Unless overridden, subsequent lookups of the same im?
age in the local storage will match this OS, regardless of the host.
--passwd
Allow Podman to add entries to /etc/passwd and /etc/group when used in
conjunction with the --user option. This is used to override the Pod?
man provided user setup in favor of entrypoint configurations such as
libnss-extrausers.
--passwd-entry=ENTRY
Customize the entry that is written to the /etc/passwd file within the
container when --passwd is used.
The variables SUSERNAME, $UID, $GID, $NAME, $HOME are automatically re?
placed with their value at runtime.
--personality=persona
Personality sets the execution domain via Linux personality(2).
--pid=mode
Set the PID namespace mode for the container. The default is to create
a private PID namespace for the container.
? container:id: join another container's PID namespace;

? host: use the host's PID namespace for the container. Note the Page 26/59

host mode gives the container full access to local PID and is
therefore considered insecure;
? ns:path: join the specified PID namespace;
? private: create a new namespace for the container (default).
--pidfile=path
When the pidfile location is specified, the container process' PID will
be written to the pidfile. (This option is not available with the re?
mote Podman client, including Mac and Windows (excluding WSL2) ma?
chines) If the pidfile option is not specified, the container process'
PID will be written to /run/containers/storage/${storage-driver}-con?
tainers/$ClID/userdata/pidfile.
After the container is started, the location for the pidfile can be
discovered with the following podman inspect command:

$ podman inspect --format '{{ .PidFile }}' $CID

/run/containers/storage/${storage-driver}-containers/$CID/userdata/pidfile

--pids-limit=limit
Tune the container's pids limit. Set to -1 to have unlimited pids for
the container. The default is 2048 on systems that support "pids"
cgroup controller.

--platform=0S/ARCH
Specify the platform for selecting the image. (Conflicts with --arch
and --os) The --platform option can be used to override the current ar?
chitecture and operating system. Unless overridden, subsequent lookups
of the same image in the local storage will match this platform, re?
gardless of the host.

--pod=name
Run container in an existing pod. Podman will make the pod automati?
cally if the pod name is prefixed with new:. To make a pod with more
granular options, use the podman pod create command before creating a
container. If a container is run with a pod, and the pod has an infra-
container, the infra-container will be started before the container is.

--pod-id-file=file

Run container in an existing pod and read the pod's ID from the speci?

Page 27/59

fied file. If a container is run within a pod, and the pod has an in?
fra-container, the infra-container will be started before the container
is.

--preserve-fds=N
Pass down to the process N additional file descriptors (in addition to
0, 1, 2). The total FDs will be 3+N. (This option is not available
with the remote Podman client, including Mac and Windows (excluding
WSL2) machines)

--privileged
Give extended privileges to this container. The default is false.
By default, Podman containers are unprivileged (=false) and cannot, for
example, modify parts of the operating system. This is because by de?
fault a container is only allowed limited access to devices. A "privi?
leged" container is given the same access to devices as the user
launching the container, with the exception of virtual consoles
(/dev/tty\d+) when running in systemd mode (--systemd=always).
A privileged container turns off the security features that isolate the
container from the host. Dropped Capabilities, limited devices, read-
only mount points, Apparmor/SELinux separation, and Seccomp filters are
all disabled.
Rootless containers cannot have more privileges than the account that
launched them.

--publish, -p=[[ip:][hostPort]:]containerPort[/protocol]
Publish a container's port, or range of ports, to the host.
Both hostPort and containerPort can be specified as a range of ports.
When specifying ranges for both, the number of container ports in the
range must match the number of host ports in the range.
If host IP is set to 0.0.0.0 or not set at all, the port will be bound
on all IPs on the host.
By default, Podman will publish TCP ports. To publish a UDP port in?
stead, give udp as protocol. To publish both TCP and UDP ports, set
--publish twice, with tcp, and udp as protocols respectively. Rootful

containers can also publish ports using the sctp protocol. Page 28/59

Host port does not have to be specified (e.g. podman run -p
127.0.0.1::80). Ifitis not, the container port will be randomly as?
signed a port on the host.
Use podman port to see the actual mapping: podman port SCONTAINER $CON?
TAINERPORT.
Note: If a container will be run within a pod, it is not necessary to
publish the port for the containers in the pod. The port must only be
published by the pod itself. Pod network stacks act like the network
stack on the host - meaning a variety of containers in the pod and pro?
grams in the container all share a single interface, IP address, and
associated ports. If one container binds to a port, no other container
can use that port within the pod while it is in use. Containers in the
pod can also communicate over localhost by having one container bind to
localhost in the pod, and another connect to that port.
--publish-all, -P
Publish all exposed ports to random ports on the host interfaces. The
default is false.
When set to true, publish all exposed ports to the host interfaces. If
the operator uses -P (or -p) then Podman will make the exposed port ac?
cessible on the host and the ports will be available to any client that
can reach the host.
When using this option, Podman will bind any exposed port to a random
port on the host within an ephemeral port range defined by
/proc/sys/net/ipv4/ip_local_port_range. To find the mapping between
the host ports and the exposed ports, use podman port.
--pull=policy
Pull image policy. The default is missing.
? always: Always pull the image and throw an error if the pull
fails.
? missing: Pull the image only if it could not be found in the
local containers storage. Throw an error if no image could be
found and the pull fails.

? never: Never pull the image but use the one from the local Page 29/59

containers storage. Throw an error if no image could be
found.
? newer: Pull if the image on the registry is newer than the one
in the local containers storage. An image is considered to be
newer when the digests are different. Comparing the time
stamps is prone to errors. Pull errors are suppressed if a
local image was found.
--quiet, -q
Suppress output information when pulling images
--read-only
Mount the container's root filesystem as read-only.
By default a container will have its root filesystem writable allowing
processes to write files anywhere. By specifying the --read-only flag,
the container will have its root filesystem mounted as read-only pro?
hibiting any writes.
--read-only-tmpfs
If container is running in --read-only mode, then mount a read-write
tmpfs on /run, tmp, and /var/tmp. The default is true.
--replace
If another container with the same name already exists, replace and re?
move it. The default is false.
--requires=container
Specify one or more requirements. A requirementis a dependency con?
tainer that will be started before this container. Containers can be
specified by name or ID, with multiple containers being separated by
commas.
--restart=policy
Restart policy to follow when containers exit. Restart policy will not
take effect if a container is stopped via the podman kill or podman
stop commands.
Valid policy values are:
?no : Do not restart containers on exit

? on-failure[:max_retries] : Restart containers when they exit

Page 30/59

with a non-zero exit code, retrying indefinitely or until the
optional max_retries count is hit
? always : Restart containers when they exit,
regardless of status, retrying indefinitely
? unless-stopped . Identical to always
Podman provides a systemd unit file, podman-restart.service, which
restarts containers after a system reboot.
If container will run as a system service, generate a systemd unit file
to manage it. See podman generate systemd.
--rm
Automatically remove the container when it exits. The default is false.
--rmi
After exit of the container, remove the image unless another container
is using it. The default is false.
--rootfs
If specified, the first argument refers to an exploded container on the
file system.
This is useful to run a container without requiring any image manage?
ment, the rootfs of the container is assumed to be managed externally.
Overlay Rootfs Mounts
The :O flag tells Podman to mount the directory from the rootfs path as
storage using the overlay file system. The container processes can mod?
ify content within the mount point which is stored in the container
storage in a separate directory. In overlay terms, the source directory
will be the lower, and the container storage directory will be the up?
per. Modifications to the mount point are destroyed when the container
finishes executing, similar to a tmpfs mount point being unmounted.
Note: On SELinux systems, the rootfs needs the correct label, which is
by default unconfined_u:object_r:container_file_t:s0.
--sdnotify=container | conmon | ignore
Determines how to use the NOTIFY_SOCKET, as passed with systemd and
Type=notify.

Default is container, which means allow the OCI runtime to proxy the Page 31/59

socket into the container to receive ready notification. Podman will
set the MAINPID to conmon's pid. The conmon option sets MAINPID to
conmon's pid, and sends READY when the container has started. The
socket is never passed to the runtime or the container. The ignore op?
tion removes NOTIFY_SOCKET from the environment for itself and child
processes, for the case where some other process above Podman uses NO?
TIFY_SOCKET and Podman should not use it.
--seccomp-policy=policy
Specify the policy to select the seccomp profile. If set to image, Pod?
man will look for a "io.containers.seccomp.profile” label in the con?
tainer-image config and use its value as a seccomp profile. Otherwise,
Podman will follow the default policy by applying the default profile
unless specified otherwise via --security-opt seccomp as described be?
low.
Note that this feature is experimental and may change in the future.
--secret=secret[,opt=opt ...]

Give the container access to a secret. Can be specified multiple times.
A secret is a blob of sensitive data which a container needs at runtime
but should not be stored in the image or in source control, such as
usernames and passwords, TLS certificates and keys, SSH keys or other
important generic strings or binary content (up to 500 kb in size).
When secrets are specified as type mount, the secrets are copied and
mounted into the container when a container is created. When secrets
are specified as type env, the secret will be set as an environment
variable within the container. Secrets are written in the container at
the time of container creation, and modifying the secret using podman
secret commands after the container is created will not affect the se?
cret inside the container.
Secrets and its storage are managed using the podman secret command.
Secret Options

? type=mount|env : How the secret will be exposed to the con?

tainer.

mount mounts the secret into the container

Page 32/59

as a file.

env exposes the secret as a environment
variable.

Defaults to mount.

? target=target : Target of secret.

For mounted secrets, this is the path to
the secret inside the container.

If a fully qualified path is provided, the
secret will be mounted at that location.

Otherwise, the secret will be mounted to
/run/secrets/target.

If target is not set, by default the se?
cret will be mounted to /run/secrets/secretname.

For env secrets, this is the environment

variable key. Defaults to secretname.

? uid=0 : UID of secret. Defaults to 0. Mount secret
type only.

? gid=0 : GID of secret. Defaults to 0. Mount secret
type only.

? mode=0 : Mode of secret. Defaults to 0444. Mount

secret type only.
Examples
Mount at /my/location/mysecret with UID 1.
--secret mysecret,target=/my/location/mysecret,uid=1
Mount at /run/secrets/customtarget with mode 0777.
--secret mysecret,target=customtarget,mode=0777
Create a secret environment variable called ENVSEC.
--secret mysecret,type=env,target=ENVSEC
--security-opt=option
Security Options
? apparmor=unconfined : Turn off apparmor confinement for the
container

? apparmor=alternate-profile : Set the apparmor confinement pro?

Page 33/59

file for the container

? label=user:USER: Set the label user for the container pro?
cesses

? label=role:ROLE: Set the label role for the container pro?
cesses

? label=type:TYPE: Set the label process type for the container
processes

? label=level:LEVEL: Set the label level for the container pro?
cesses

? label=filetype:TYPE: Set the label file type for the container
files

? label=disable: Turn off label separation for the container

Note: Labeling can be disabled for all containers by setting la?
bel=false in the containers.conf (/etc/containers/containers.conf or
$HOME!/.config/containers/containers.conf) file.

? mask=/path/1:/path/2: The paths to mask separated by a colon.
A masked path cannot be accessed inside the container.

? no-new-privileges: Disable container processes from gaining
additional privileges.

? seccomp=unconfined: Turn off seccomp confinement for the con?
tainer.

? seccomp=profile.json: JSON file to be used as a seccomp fil?
ter. Note that the io.podman.annotations.seccomp annotation is
set with the specified value as shown in podman inspect.

? proc-opts=OPTIONS : Comma-separated list of options to use for
the /proc mount. More details for the possible mount options
are specified in the proc(5) man page.

? unmask=ALL or /path/l:/path/2, or shell expanded paths
(/proc/*): Paths to unmask separated by a colon. If set to
ALL, it will unmask all the paths that are masked or made
read-only by default. The default masked paths are
/proc/acpi, /proc/kcore, /proc/keys, /proc/latency_stats,

/proc/sched_debug, /proc/scsi, /proc/timer_list,

Page 34/59

/proc/timer_stats, /sys/firmware, and /sys/fs/selinux. The
default paths that are read-only are /proc/asound, /proc/bus,
/proc/fs, [Iproclirq, /proc/sys, [proc/sysrg-trigger,
/sysl/fs/cgroup.
Note: Labeling can be disabled for all containers by setting la?
bel=false in the containers.conf(5) file.
--shm-size=number[unit]
Size of /dev/ishm. A unit can be b (bytes), k (kibibytes), m
(mebibytes), or g (gibibytes). If the unit is omitted, the system uses
bytes. If the size is omitted, the default is 64m. When size is 0,
there is no limit on the amount of memory used for IPC by the con?
tainer. This option conflicts with --ipc=host.
--Sig-proxy
Proxy received signals to the container process (non-TTY mode only).
SIGCHLD, SIGSTOP, and SIGKILL are not proxied.
The default is true.
--stop-signal=signal
Signal to stop a container. Default is SIGTERM.
--stop-timeout=seconds
Timeout to stop a container. Default is 10. Remote connections use lo?
cal containers.conf for defaults
--subgidname=name
Run the container in a new user namespace using the map with name in
the /etc/subgid file. If running rootless, the user needs to have the
right to use the mapping. See subgid(5). This flag conflicts with
--userns and --gidmap.
--subuidname=name
Run the container in a new user namespace using the map with name in
the /etc/subuid file. If running rootless, the user needs to have the
right to use the mapping. See subuid(5). This flag conflicts with
--userns and --uidmap.
--sysctl=name=value

Configure namespaced kernel parameters at runtime. Page 35/59

For the IPC namespace, the following sysctls are allowed:

? kernel.msgmax

? kernel. msgmnb

? kernel.msgmni

? kernel.sem

? kernel.shmall

? kernel.shmmax

? kernel.shmmni

? kernel.shm_rmid_forced

? Sysctls beginning with fs.mqueue.*

Note: if using the --ipc=host option, the above sysctls are not al?
lowed.
For the network namespace, only sysctls beginning with net.* are al?
lowed.
Note: if using the --network=host option, the above sysctls are not al?
lowed.

--systemd=true | false | always
Run container in systemd mode. The default is true.

? true enables systemd mode only when the command executed in?
side the container is systemd, /usr/sbin/init, /sbin/init or
/usr/local/sbin/init, systemd mode is enabled.

? false disables systemd mode.

? always enforces the systemd mode to be enabled.

Running the container in systemd mode causes the following changes:

? Podman mounts tmpfs file systems on the following directories
? [run
? [run/lock
? tmp
? Isysl/fs/icgroup/systemd
? Ivar/lib/journal

? Podman sets the default stop signal to SIGRTMIN+3.

? Podman sets container_uuid environment variable in the con?

tainer to the first 32 characters of the container id. Page 36/59

? Podman will not mount virtual consoles (/dev/tty\d+) when run?
ning with --privileged.
This allows systemd to run in a confined container without any modifi?
cations.
Note that on SELinux systems, systemd attempts to write to the cgroup
file system. Containers writing to the cgroup file system are denied by
default. The container_manage_cgroup boolean must be enabled for this
to be allowed on an SELinux separated system.
setsebool -P container_manage_cgroup true
--timeout=seconds
Maximum time a container is allowed to run before conmon sends it the
kill signal. By default containers will run until they exit or are
stopped by podman stop.
--tls-verify
Require HTTPS and verify certificates when contacting registries (de?
fault: true). If explicitly set to true, TLS verification will be
used. If set to false, TLS verification will not be used. If not
specified, TLS verification will be used unless the target registry is
listed as an insecure registry in containers-registries.conf(5)
--tmpfs=fs
Create a tmpfs mount.
Mount a temporary filesystem (tmpfs) mount into a container, for exam?
ple:
$ podman run -d --tmpfs /tmp:rw,size=787448k,mode=1777 my_image
This command mounts a tmpfs at /tmp within the container. The supported
mount options are the same as the Linux default mount flags. If no op?
tions are specified, the system uses the following options:
rw,noexec,nosuid,nodev.
—tty, -t
Allocate a pseudo-TTY. The default is false.
When set to true, Podman will allocate a pseudo-tty and attach to the
standard input of the container. This can be used, for example, to run

a throwaway interactive shell.

Page 37/59

NOTE: The --tty flag prevents redirection of standard output. It com?
bines STDOUT and STDERR, it can insert control characters, and it can
hang pipes. This option should only be used when run interactively in a
terminal. When feeding input to Podman, use -i only, not -it.
echo "asdf" | podman run --rm -i someimage /bin/cat
--tz=timezone
Set timezone in container. This flag takes area-based timezones, GMT
time, as well as local, which sets the timezone in the container to
match the host machine. See /usr/share/zoneinfo/ for valid timezones.
Remote connections use local containers.conf for defaults
--uidmap=container_uid:from_uid:amount
Run the container in a new user namespace using the supplied UID map?
ping. This option conflicts with the --userns and --subuidname options.
This option provides a way to map host UIDs to container UIDs. It can
be passed several times to map different ranges.
The _fromuid value is based upon the user running the command, either
rootful or rootless users. * rootful user: con?
tainer_uid:host_uid:amount * rootless user: container_uid:intermedi?
ate_uid:amount
When podman run is called by a privileged user, the option --uidmap
works as a direct mapping between host UIDs and container UIDs.
host UID -> container UID
The amount specifies the number of consecutive UIDs that will be
mapped. If for example amount is 4 the mapping would look like:
| host UD | -container UID || - | -
| | _fromuid | _containeruid || _fromuid + 1| _containeruid +
1|| _fromuid + 2 | _containeruid + 2 | | _fromuid + 3 | _containeruid
+ 3|
When podman run is called by an unprivileged user (i.e. running root?
less), the value _fromuid is interpreted as an "intermediate UID". In
the rootless case, host UIDs are not mapped directly to container UIDs.
Instead the mapping happens over two mapping steps:

host UID -> intermediate UID -> container UID Page 38/59

The --uidmap option only influences the second mapping step.
The first mapping step is derived by Podman from the contents of the
file /etc/subuid and the UID of the user calling Podman.

First mapping step:

| host UID | intermediate UID |

| - | -

| UID for the user starting Podman | 0]

| 1st subordinate UID for the user starting Podman | 1]
| 2nd subordinate UID for the user starting Podman | 2|
| 3rd subordinate UID for the user starting Podman | 3
| nth subordinate UID for the user starting Podman | n|

To be able to use intermediate UIDs greater than zero, the user needs
to have subordinate UIDs configured in /etc/subuid. See subuid(5).

The second mapping step is configured with --uidmap.

If for example amount is 5 the second mapping step would look like:

| intermediate UID | container UID || - |

- | | _fromuid | _containeruid ||

_fromuid + 1 | _containeruid + 1 | | _fromuid + 2 | _con?
taineruid + 2 | | _fromuid + 3 | _containeruid + 3 | | _fromuid +
4 | _containeruid + 4 |

When running as rootless, Podman will use all the ranges configured in
the /etc/subuid file.
The current user ID is mapped to UID=0 in the rootless user namespace.

Every additional range is added sequentially afterward:

| host [rootless user namespace | length
I - |- | -

| | $UID | O | 1
11 | $FIRST_RANGE_ID |

$FIRST_RANGE_LENGTH | | 1+$FIRST_RANGE_LENGTH | $SECOND_RANGE_ID
| SSECOND_RANGE_LENGTH]|

Even if a user does not have any subordinate UIDs in /etc/subuid,

--uidmap could still be used to map the normal UID of the user to a

container UID by running podman run --uidmap $container_uid:0:1 --user Page 39/59

$container_uid
Note: the --uidmap flag cannot be called in conjunction with the --pod
flag as a uidmap cannot be set on the container level when in a pod.

--ulimit=option
Ulimit options. You can use host to copy the current configuration from
the host.

--umask=umask
Set the umask inside the container. Defaults to 0022. Remote connec?
tions use local containers.conf for defaults

--unsetenv=env
Unset default environment variables for the container. Default environ?
ment variables include variables provided natively by Podman, environ?
ment variables configured by the image, and environment variables from
containers.conf.

--unsetenv-all
Unset all default environment variables for the container. Default en?
vironment variables include variables provided natively by Podman, en?
vironment variables configured by the image, and environment variables
from containers.conf.

--user, -u=user[:group]
Sets the username or UID used and, optionally, the groupname or GID for
the specified command. Both user and group may be symbolic or numeric.
Without this argument, the command will run as the user specified in
the container image. Unless overridden by a USER command in the Con?
tainerfile or by a value passed to this option, this user generally de?
faults to root.
When a user namespace is not in use, the UID and GID used within the
container and on the host will match. When user namespaces are in use,
however, the UID and GID in the container may correspond to another UID
and GID on the host. In rootless containers, for example, a user name?
space is always used, and root in the container will by default corre?
spond to the UID and GID of the user invoking Podman.

--userns=mode Page 40/59

Set the user namespace mode for the container. It defaults to the POD?
MAN_USERNS environment variable. An empty value (™"
spaces are disabled unless an explicit mapping is set with the --uidmap
and --gidmap options.

This option is incompatible with --gidmap, --uidmap, --subuidname and
--subgidname.

Rootless user --userns=Key mappings:

PP 7??77?7??7?7277?727?7?7???7?7?7?7?7?7?7

?Key ? Host User ? Container User ?

PP ?27?0?2??7?77??7???7?7??7?277??7?7?7?7??7?7?7?7??7?7

e ?$UID ? 0 (Default User ac? ?
? ? ? count mapped to?

? ? ? root user in con? ?

? ? ? tainer.) ?

PP 7??7??7??7??7??7?7?7?77?77?

?keep-id ?$UID ?3UID (Map user ac? ?
? ? ? countto same UID ?
? ? ? within container.) ?

PPV ??77?72??72?7?72?7?7???7??7?7?7?7?7

?keep-id:uid=200,gid=210 ? $UID ? 200:210 (Map user ?

? ? ? account to speci? ?
? ? ? fied uid, gid value ?
? ? ? within container.) ?

QP77 ??2???????7??????7??7?77?777?777

?auto ?$UID ?nil (Host User UID ?
? ? ?is not mapped into ?
? ? ? container.) ?

PP 7???7??7?7???7??7??7?77777

?nomap ?$UID ?nil (Host User UID ?
? ? ?is not mapped into ?
? ? ? container.) ?

PP ??7???7???7??7?7?7?77?777?77?77

Valid mode values are:

) means user name?

Page 41/59

auto[:OPTIONS,...]: automatically create a unique user namespace.
The --userns=auto flag requires that the user name containers be speci?
fied in the /etc/subuid and /etc/subgid files, with an unused range of
subordinate user IDs that Podman containers are allowed to allocate.
See subuid(b).
Example: containers:2147483647:2147483648.
Podman allocates unique ranges of UIDs and GIDs from the containers
subordinate user ids. The size of the ranges is based on the number of
UIDs required in the image. The number of UIDs and GIDs can be overrid?
den with the size option.
The rootless option --userns=keep-id uses all the subuids and subgids
of the user. Using --userns=auto when starting new containers will not
work as long as any containers exist that were started with
--userns=keep-id.
Valid auto options:
? gidmapping=CONTAINER_GID:HOST_GID:SIZE: to force a GID mapping
to be present in the user namespace.
? size=SIZE: to specify an explicit size for the automatic user
namespace. e.g. --userns=auto:size=8192. If size is not speci?
fied, auto will estimate a size for the user namespace.
? uidmapping=CONTAINER_UID:HOST_UID:SIZE: to force a UID mapping
to be present in the user namespace.
container:id: join the user namespace of the specified container.
host: run in the user namespace of the caller. The processes running in
the container will have the same privileges on the host as any other
process launched by the calling user (default).
keep-id: creates a user namespace where the current rootless user's
UID:GID are mapped to the same values in the container. This option is
not allowed for containers created by the root user.
Valid keep-id options:
? uid=UID: override the UID inside the container that will be
used to map the current rootless user to.

? gid=GID: override the GID inside the container that will be

Page 42/59

used to map the current rootless user to.
nomap: creates a user namespace where the current rootless user's
UID:GID are not mapped into the container. This option is not allowed
for containers created by the root user.
ns:namespace: run the container in the given existing user namespace.

--uts=mode
Set the UTS namespace mode for the container. The following values are
supported:

? host: use the host's UTS namespace inside the container.

? private: create a new namespace for the container (default).

? ns:[path]: run the container in the given existing UTS name?
space.

? container:[container]: join the UTS namespace of the specified
container.

--variant=VARIANT
Use VARIANT instead of the default architecture variant of the con?
tainer image. Some images can use multiple variants of the arm archi?
tectures, such as arm/v5 and arm/v7.

--volume, -v=[[SOURCE-VOLUME|HOST-DIR:]JCONTAINER-DIR[:OPTIONS]]
Create a bind mount. If -v /HOST-DIR:/CONTAINER-DIR is specified, Pod?
man bind mounts /HOST-DIR from the host into /CONTAINER-DIR in the Pod?
man container. Similarly, -v. SOURCE-VOLUME:/CONTAINER-DIR will mount
the named volume from the host into the container. If no such named
volume exists, Podman will create one. If no source is given, the vol?
ume will be created as an anonymously named volume with a randomly gen?
erated name, and will be removed when the container is removed via the
--rm flag or the podman rm --volumes command.

(Note when using the remote client, including Mac and Windows (exclud?
ing WSL2) machines, the volumes will be mounted from the remote server,
not necessarily the client machine.)
The OPTIONS is a comma-separated list and can be: [1] ?#Footnotel?

? rw|ro

?2z|Z

Page 43/59

?[Q]

? U]

? [no]copy

? [no]dev

? [nolexec

? [no]suid

? [r]bind

? [r]shared|[r]slave|[r]private[rlunbindable

? idmap[=options]
The CONTAINER-DIR must be an absolute path such as /src/docs. The vol?
ume will be mounted into the container at this directory.
If a volume source is specified, it must be a path on the host or the
name of a named volume. Host paths are allowed to be absolute or rela?
tive; relative paths are resolved relative to the directory Podman is
run in. If the source does not exist, Podman will return an error.
Users must pre-create the source files or directories.
Any source that does not begin with a . or / will be treated as the
name of a named volume. If a volume with that name does not exist, it
will be created. Volumes created with names are not anonymous, and
they are not removed by the --rm option and the podman rm --volumes
command.
Specify multiple -v options to mount one or more volumes into a con?
tainer.
Write Protected Volume Mounts
Add :ro or :rw option to mount a volume in read-only or read-write
mode, respectively. By default, the volumes are mounted read-write.
See examples.
Chowning Volume Mounts
By default, Podman does not change the owner and group of source volume
directories mounted into containers. If a container is created in a new
user namespace, the UID and GID in the container may correspond to an?
other UID and GID on the host.

The :U suffix tells Podman to use the correct host UID and GID based on

Page 44/59

the UID and GID within the container, to change recursively the owner
and group of the source volume. Chowning walks the file system under
the volume and changes the UID/GID on each file, it the volume has
thousands of inodes, this process will take a long time, delaying the
start of the container.

Warning use with caution since this will modify the host filesystem.
Labeling Volume Mounts

Labeling systems like SELinux require that proper labels are placed on
volume content mounted into a container. Without a label, the security
system might prevent the processes running inside the container from
using the content. By default, Podman does not change the labels set by
the OS.

To change a label in the container context, add either of two suffixes

:z or :Z to the volume mount. These suffixes tell Podman to relabel

file objects on the shared volumes. The z option tells Podman that two
or more containers share the volume content. As a result, Podman labels
the content with a shared content label. Shared volume labels allow all
containers to read/write content. The Z option tells Podman to label
the content with a private unshared label Only the current container
can use a private volume. Relabeling walks the file system under the
volume and changes the label on each file, it the volume has thousands
of inodes, this process will take a long time, delaying the start of

the container. If the volume was previously relabeled with the z op?
tion, Podman is optimized to not relabel a second time. If files are
moved into the volume, then the labels can be manually change with the
chcon -R container_file_t PATH command.

Note: Do not relabel system files and directories. Relabeling system
content might cause other confined services on the machine to fail.
For these types of containers we recommend disabling SELinux separa?
tion. The option --security-opt label=disable disables SELinux separa?
tion for the container. For example if a user wanted to volume mount
their entire home directory into a container, they need to disable

SELinux separation. Page 45/59

$ podman run --security-opt label=disable -v $HOME:/home/user fedora touch /home/user/file

Overlay Volume Mounts

The :0O flag tells Podman to mount the directory from the host as a tem?
porary storage using the overlay file system. The container processes
can modify content within the mountpoint which is stored in the con?
tainer storage in a separate directory. In overlay terms, the source
directory will be the lower, and the container storage directory will

be the upper. Modifications to the mount point are destroyed when the
container finishes executing, similar to a tmpfs mount point being un?
mounted.

For advanced users, the overlay option also supports custom non-
volatile upperdir and workdir for the overlay mount. Custom upperdir
and workdir can be fully managed by the users themselves, and Podman
will not remove it on lifecycle completion. Example :O,up?
perdir=/some/upper,workdir=/some/work

Subsequent executions of the container will see the original source di?
rectory content, any changes from previous container executions no
longer exist.

One use case of the overlay mount is sharing the package cache from the
host into the container to allow speeding up builds.

Note:

- The "O flag conflicts with other options listed above.

Content mounted into the container is labeled with the private label.

On SELinux systems, labels in the source directory must be read?
able by the container label. Usually containers can read/execute con?
tainer_share_t and can read/write container_file_t. If unable to change
the labels on a source volume, SELinux container separation must be
disabled for the container to work.

- The source directory mounted into the container with an overlay
mount should not be modified, it can cause unexpected failures. It is
recommended to not modify the directory until the container finishes
running.

Mounts propagation

Page 46/59

By default bind mounted volumes are private. That means any mounts done
inside the container will not be visible on host and vice versa. One

can change this behavior by specifying a volume mount propagation prop?
erty. Making a volume shared mounts done under that volume inside the
container will be visible on host and vice versa. Making a volume slave
enables only one way mount propagation and that is mounts done on host
under that volume will be visible inside container but not the other

way around. [1] ?#Footnotel?

To control mount propagation property of a volume one can use the
[r]shared, [r]slave, [r]private or the [rlunbindable propagation flag.
Propagation property can be specified only for bind mounted volumes and
not for internal volumes or named volumes. For mount propagation to
work the source mount point (the mount point where source dir is
mounted on) has to have the right propagation properties. For shared
volumes, the source mount point has to be shared. And for slave vol?
umes, the source mount point has to be either shared or slave. [1]
?#Footnotel?

To recursively mount a volume and all of its submounts into a con?
tainer, use the rbind option. By default the bind option is used, and
submounts of the source directory will not be mounted into the con?
tainer.

Mounting the volume with a copy option tells podman to copy content
from the underlying destination directory onto newly created internal
volumes. The copy only happens on the initial creation of the volume.
Content is not copied up when the volume is subsequently used on dif?
ferent containers. The copy option is ignored on bind mounts and has no
effect.

Mounting the volume with the nosuid options means that SUID applica?
tions on the volume will not be able to change their privilege. By de?

fault volumes are mounted with nosuid.

Mounting the volume with the noexec option means that no executables on
the volume will be able to be executed within the container.

Mounting the volume with the nodev option means that no devices on the

Page 47/59

volume will be able to be used by processes within the container. By
default volumes are mounted with nodev.

If the HOST-DIR is a mount point, then dev, suid, and exec options are
ignored by the kernel.

Use df HOST-DIR to figure out the source mount, then use findmnt -o
TARGET,PROPAGATION source-mount-dir to figure out propagation proper?
ties of source mount. If findmnt(1) utility is not available, then one

can look at the mount entry for the source mount point in
/proc/self/mountinfo. Look at the "optional fields" and see if any
propagation properties are specified. Inthere, shared:N means the
mount is shared, master:N means mount is slave, and if nothing is
there, the mount is private. [1] ?#Footnotel?

To change propagation properties of a mount point, use mount(8) com?
mand. For example, if one wants to bind mount source directory /foo,
one can do mount --bind /foo /foo and mount --make-private --make-
shared /foo. This will convert /foo into a shared mount point. Alterna?
tively, one can directly change propagation properties of source mount.
Say / is source mount for /foo, then use mount --make-shared / to con?
vert / into a shared mount.

Note: if the user only has access rights via a group, accessing the
volume from inside a rootless container will fail.

Idmapped mount

If idmap is specified, create an idmapped mount to the target user
namespace in the container. The idmap option supports a custom mapping
that can be different than the user namespace used by the container.
The mapping can be specified after the idmap option like:
idmap=uids=0-1-10#10-11-10;gids=0-100-10. For each triplet, the first
value is the start of the backing file system IDs that are mapped to

the second value on the host. The length of this mapping is given in

the third value. Multiple ranges are separated with #.

Use the --group-add keep-groups option to pass the user's supplementary
group access into the container.

--volumes-from=CONTAINER[:OPTIONS] Page 48/59

Mount volumes from the specified container(s). Used to share volumes
between containers. The options is a comma-separated list with the fol?
lowing available elements:
? rwlro
?z
Mounts already mounted volumes from a source container onto another
container. CONTAINER may be a name or ID. To share a volume, use the
--volumes-from option when running the target container. Volumes can be
shared even if the source container is not running.
By default, Podman mounts the volumes in the same mode (read-write or
read-only) as it is mounted in the source container. This can be
changed by adding a ro or rw option.
Labeling systems like SELinux require that proper labels are placed on
volume content mounted into a container. Without a label, the security
system might prevent the processes running inside the container from
using the content. By default, Podman does not change the labels set by
the OS.
To change a label in the container context, add z to the volume mount.
This suffix tells Podman to relabel file objects on the shared volumes.
The z option tells Podman that two entities share the volume content.
As a result, Podman labels the content with a shared content label.
Shared volume labels allow all containers to read/write content.
If the location of the volume from the source container overlaps with
data residing on a target container, then the volume hides that data on
the target.
--workdir, -w=dir
Working directory inside the container.
The default working directory for running binaries within a container
is the root directory (/). The image developer can set a different de?
fault with the WORKDIR instruction. The operator can override the work?
ing directory by using the -w option.
Exit Status

The exit code from podman run gives information about why the container Page 49/59

failed to run or why it exited. When podman run exits with a non-zero
code, the exit codes follow the chroot(1) standard, see below:
125 The error is with Podman itself
$ podman run --foo busybox; echo $?
Error: unknown flag: --foo
125
126 The contained command cannot be invoked
$ podman run busybox /etc; echo $?
Error: container_linux.go:346: starting container process caused "exec: \"/etc\": permission denied": OCI runtime
error
126
127 The contained command cannot be found
$ podman run busybox foo; echo $?
Error: container_linux.go:346: starting container process caused "exec: \"foo\": executable file not found in $PATH":
OCI runtime error
127
Exit code contained command exit code
$ podman run busybox /bin/sh -c 'exit 3'; echo $?
3
EXAMPLES
Running container in read-only mode
During container image development, containers often need to write to
the image content. Installing packages into /usr, for example. In pro?
duction, applications seldom need to write to the image. Container ap?
plications write to volumes if they need to write to file systems at
all. Applications can be made more secure by running them in read-only
mode using the --read-only switch. This protects the container's image
from modification. By default read-only containers can write to tempo?
rary data. Podman mounts a tmpfs on /run and /tmp within the container.
If the container should not write to any file system within the con?
tainer, including tmpfs, set --read-only-tmpfs=false.
$ podman run --read-only -i -t fedora /bin/bash

$ podman run --read-only --read-only-tmpfs=false --tmpfs /run -i -t fedora /bin/bash Page 50/59

Exposing log messages from the container to the host's log
Bind mount the /dev/log directory to have messages that are logged in
the container show up in the host's syslog/journal.
$ podman run -v /dev/log:/dev/log -i -t fedora /bin/bash
From inside the container test this by sending a message to the log.
(bash)# logger "Hello from my container"
Then exit and check the journal.
(bash)# exit
$ journalctl -b | grep Hello
This should list the message sent to logger.
Attaching to one or more from STDIN, STDOUT, STDERR
Without specifying the -a option, Podman will attach everything (stdin,
stdout, stderr). Override the default by specifying -a (stdin, stdout,
stderr), as in:
$ podman run -a stdin -a stdout -i -t fedora /bin/bash
Sharing IPC between containers
Using shm_server.c available here:
https://lwww.cs.cf.ac.uk/Dave/C/node27.html
Testing --ipc=host mode:
Host shows a shared memory segment with 7 pids attached, happens to be
from httpd:

$ sudo ipcs -m

key shmid owner perms bytes nattch status
0x01128e25 0 root 600 1000 7
Now run a regular container, and it correctly does NOT see the shared
memory segment from the host:

$ podman run -it shm ipcs -m

key shmid owner perms bytes nattch status
Run a container with the new --ipc=host option, and it now sees the
shared memory segment from the host httpd:

$ podman run -it --ipc=host shm ipcs -m Page 51/59

key shmid owner perms bytes nattch status
0x01128e250 root 600 1000 7

Testing --ipc=container:id mode:

Start a container with a program to create a shared memory segment:
$ podman run -it shm bash
$ sudo shm/shm_server &

$ sudo ipcs -m

key shmid owner perms bytes nattch status
0x0000162e O root 666 27 1
Create a 2nd container correctly shows no shared memory segment from
1st container:

$ podman run shm ipcs -m

key shmid owner perms bytes nattch status
Create a 3rd container using the --ipc=container:id option, now it
shows the shared memory segment from the first:

$ podman run -it --ipc=container:ed735b2264ac shm ipcs -m

$ sudo ipcs -m

key shmid owner perms bytes nattch status
0x0000162e 0 root 666 27 1
Mapping Ports for External Usage
The exposed port of an application can be mapped to a host port using
the -p flag. For example, an httpd port 80 can be mapped to the host
port 8080 using the following:
$ podman run -p 8080:80 -d -i -t fedora/httpd
Mounting External Volumes
To mount a host directory as a container volume, specify the absolute
path to the directory and the absolute path for the container directory
separated by a colon. If the source is a named volume maintained by

Podman, it is recommended to use its name rather than the path to the Page 52/59

volume. Otherwise the volume will be considered as an orphan and wiped
by the podman volume prune command:

$ podman run -v /var/db:/datal -i -t fedora bash

$ podman run -v data:/data2 -i -t fedora bash

$ podman run -v /var/cache/dnf:/var/cache/dnf:O -ti fedora dnf -y update
If the container needs a writeable mounted volume by a non root user
inside the container, use the U option. This option tells Podman to
chown the source volume to match the default UID and GID used within
the container.

$ podman run -d -e MYSQL_ROOT_PASSWORD=root --user mysql --userns=keep-id -v ~/data:/var/lib/mysql:z,U
mariadb
Alternatively if the container needs a writable volume by a non root
user inside of the container, the --userns=keep-id option allows users
to specify the UID and GID of the user executing Podman to specific
UIDs and GIDs within the container. Since the processes running in the
container run as the user's UID, they can read/write files owned by the
user.
$ podman run -d -e MYSQL_ROOT_PASSWORD-=root --user mysqgl --userns=keep-id:uid=999,gid=999 -v
~/data:/var/lib/mysql:z mariadb

Using --mount flags to mount a host directory as a container folder,
specify the absolute path to the directory or the volume name, and the
absolute path within the container directory:

$ podman run --mount type=bind,src=/var/db,target=/datal busybox sh

$ podman run --mount type=bind,src=volume-name,target=/datal busybox sh
When using SELinux, be aware that the host has no knowledge of con?
tainer SELinux policy. Therefore, in the above example, if SELinux pol?
icy is enforced, the /var/db directory is not writable to the con?
tainer. A "Permission Denied" message will occur and an avc: message in
the host's syslog.
To work around this, at time of writing this man page, the following
command needs to be run in order for the proper SELinux policy type la?
bel to be attached to the host directory:

$ chcon -Rt svirt_sandbox_file_t /var/db Page 53/59

Now, writing to the /datal volume in the container will be allowed and
the changes will also be reflected on the host in /var/db.
Using alternative security labeling

Override the default labeling scheme for each container by specifying
the --security-opt flag. For example, specify the MCS/MLS level, a re?
quirement for MLS systems. Specifying the level in the following com?
mand allows the same content to be shared between containers.

podman run --security-opt label=level:s0:¢100,c200 -i -t fedora bash
An MLS example might be:

$ podman run --security-opt label=level: TopSecret -i -t rhel7 bash
To disable the security labeling for this container versus running with
the

--permissive flag, use the following command:

$ podman run --security-opt label=disable -i -t fedora bash
Tighten the security policy on the processes within a container by
specifying an alternate type for the container. For example, run a con?
tainer that is only allowed to listen on Apache ports by executing the
following command:

$ podman run --security-opt label=type:svirt_apache_t -i -t centos bash
Note an SELinux policy defining a svirt_apache_t type would need to be
written.
To mask additional specific paths in the container, specify the paths
separated by a colon using the mask option with the --security-opt
flag.

$ podman run --security-opt mask=/foo/bar:/second/path fedora bash
To unmask all the paths that are masked by default, set the unmask op?
tion to ALL. Or to only unmask specific paths, specify the paths as
shown above with the mask option.

$ podman run --security-opt unmask=ALL fedora bash
To unmask all the paths that start with /proc, set the unmask option to
/proc/*.

$ podman run --security-opt unmask=/proc/* fedora bash

$ podman run --security-opt unmask=/foo/bar:/sys/firmware fedora bash Page 54/59

Setting device weight via --blkio-weight-device flag.
$ podman run -it --blkio-weight-device "/dev/sda:200" ubuntu
Using a podman container with input from a pipe
$ echo "asdf" | podman run --rm -i --entrypoint /bin/cat someimage
asdf
Setting automatic user namespace separated containers
podman run --userns=auto:size=65536 ubi8-micro cat /proc/self/uid_map
02147483647 65536
podman run --userns=auto:size=65536 ubi8-micro cat /proc/self/uid_map
02147549183 65536
Setting Namespaced Kernel Parameters (Sysctls)
The --sysctl sets namespaced kernel parameters (sysctls) in the con?
tainer. For example, to turn on IP forwarding in the containers network
namespace, run this command:
$ podman run --sysctl net.ipv4.ip_forward=1 someimage
Note that not all sysctls are namespaced. Podman does not support
changing sysctls inside of a container that also modify the host sys?
tem. As the kernel evolves we expect to see more sysctls become names?
paced.
See the definition of the --sysctl option above for the current list of
supported sysctls.
Set UID/GID mapping in a new user namespace
Running a container in a new user namespace requires a mapping of the
uids and gids from the host.
$ podman run --uidmap 0:30000:7000 --gidmap 0:30000:7000 fedora echo hello
Configuring Storage Options from the command line
Podman allows for the configuration of storage by changing the values
in the /etc/container/storage.conf or by using global options. This
shows how to set up and use fuse-overlayfs for a one-time run of busy?
box using global options.
podman --log-level=debug --storage-driver overlay --storage-opt "overlay.mount_program=/usr/bin/fuse-overlayfs"
run busybox /bin/sh

Configure timezone in a container Page 55/59

$ podman run --tz=local alpine date
$ podman run --tz=Asia/Shanghai alpine date
$ podman run --tz=US/Eastern alpine date
Adding dependency containers
The first container, containerl, is not started initially, but must be
running before container2 will start. The podman run command will
start the container automatically before starting container2.
$ podman create --name containerl -t -i fedora bash
$ podman run --name container2 --requires containerl -t -i fedora bash
Multiple containers can be required.
$ podman create --name containerl -t -i fedora bash
$ podman create --name container?2 -t -i fedora bash
$ podman run --name container3 --requires containerl,container2 -t -i fedora bash
Configure keep supplemental groups for access to volume
$ podman run -v /var/lib/design:/var/lib/design --group-add keep-groups ubi8
Configure execution domain for containers using personality flag
$ podman run --name containerl --personality=LINUX32 fedora bash
Run a container with external rootfs mounted as an overlay
$ podman run --name containerl --rootfs /path/to/rootfs:O bash
Handling Timezones in java applications in a container.
In order to use a timezone other than UTC when running a Java applica?
tion within a container, the TZ environment variable must be set within
the container. Java applications will ignore the value set with the
--tz option.
Example run
podman run -ti --rm -e TZ=EST mytzimage
Irwxrwxrwx. 1 root root 29 Nov 3 08:51 /etc/localtime -> ../usr/share/zoneinfo/Etc/UTC
Now with default timezone:
Fri Nov 19 18:10:55 EST 2021
Java default sees the following timezone:
2021-11-19T18:10:55.651130-05:00
Forcing UTC:

Fri Nov 19 23:10:55 UTC 2021 Page 56/59

Run a container connected to two networks (called netl and net2) with a
static ip
$ podman run --network net1:ip=10.89.1.5 --network net2:ip=10.89.10.10 alpine ip addr
Rootless Containers
Podman runs as a non-root user on most systems. This feature requires
that a new enough version of shadow-utils be installed. The shadow-
utils package must include the newuidmap(1) and newgidmap(1) executa?
bles.
In order for users to run rootless, there must be an entry for their
username in /etc/subuid and /etc/subgid which lists the UIDs for their
user namespace.
Rootless Podman works better if the fuse-overlayfs and slirp4netns
packages are installed. The fuse-overlayfs package provides a
userspace overlay storage driver, otherwise users need to use the vfs
storage driver, which can be disk space expensive and less performant
than other drivers.
To enable VPN on the container, slirp4netns or pasta needs to be speci?
fied; without either, containers need to be run with the --network=host
flag.
ENVIRONMENT
Environment variables within containers can be set using multiple dif?
ferent options, in the following order of precedence (later entries
override earlier entries):
? Container image: Any environment variables specified in the
container image.
? --http-proxy: By default, several environment variables will
be passed in from the host, such as http_proxy and no_proxy.
See --http-proxy for details.
? --env-host: Host environment of the process executing Podman
is added.
? --env-file: Any environment variables specified via env-files.
If multiple files are specified, then they override each other

in order of entry. Page 57/59

? --env: Any environment variables specified will override pre?
vious settings.
Run containers and set the environment ending with a *. The trailing *
glob functionality is only active when no value is specified:
$ export ENV1=a
$ podman run --env 'ENV*' alpine env | grep ENV
ENV1=a
$ podman run --env 'ENV*=b' alpine env | grep ENV
ENV*=b
CONMON
When Podman starts a container it actually executes the conmon program,
which then executes the OCI Runtime. Conmon is the container monitor.
It is a small program whose job is to watch the primary process of the
container, and if the container dies, save the exit code. It also
holds open the tty of the container, so that it can be attached to
later. This is what allows Podman to run in detached mode (back?
grounded), so Podman can exit but conmon continues to run. Each con?
tainer has their own instance of conmon. Conmon waits for the container
to exit, gathers and saves the exit code, and then launches a Podman
process to complete the container cleanup, by shutting down the network
and storage. For more information on conmon, please reference the
conmon(8) man page.
FILES
/etc/subuid
/etc/subgid
NOTE: Use the environment variable TMPDIR to change the temporary stor?
age location of downloaded container images. Podman defaults to use
Ivar/tmp.
SEE ALSO
podman(1l), podman-save(l), podman-ps(1), podman-attach(1), podman-pod-
create(1), podman-port(1), podman-start(1), podman-kill(1), podman-
stop(1l), podman-generate-systemd(1), podman-rm(1), subgid(5), sub?

uid(5), containers.conf(5), systemd.unit(5), setsebool(8), Page 58/59

slirp4dnetns(1), pasta(l), fuse-overlayfs(1), proc(5), conmon(8), per?
sonality(2)

HISTORY
September 2018, updated by Kunal Kushwaha <kushwaha_ ku?
nal_v7@Iab.ntt.co.jp>
October 2017, converted from Docker documentation to Podman by Dan
Walsh for Podman <dwalsh@redhat.com>
November 2015, updated by Sally O'Malley <somalley@redhat.com>
June 2014, updated by Sven Dowideit <SvenDowideit@home.org.au>
April 2014, Originally compiled by William Henry <whenry@redhat.com>
based on docker.com source material and internal work.

FOOTNOTES
1: The Podman project is committed to inclusivity, a core value of open
source. The master and slave mount propagation terminology used here is
problematic and divisive, and should be changed. However, these terms
are currently used within the Linux kernel and must be used as-is at
this time. When the kernel maintainers rectify this usage, Podman will
follow suit immediately.

podman-run(1)

Page 59/59

