
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'pwritev.2' command

$ man pwritev.2

READV(2) Linux Programmer's Manual READV(2)

NAME

 readv, writev, preadv, pwritev, preadv2, pwritev2 - read or write data

 into multiple buffers

SYNOPSIS

 #include <sys/uio.h>

 ssize_t readv(int fd, const struct iovec *iov, int iovcnt);

 ssize_t writev(int fd, const struct iovec *iov, int iovcnt);

 ssize_t preadv(int fd, const struct iovec *iov, int iovcnt,

 off_t offset);

 ssize_t pwritev(int fd, const struct iovec *iov, int iovcnt,

 off_t offset);

 ssize_t preadv2(int fd, const struct iovec *iov, int iovcnt,

 off_t offset, int flags);

 ssize_t pwritev2(int fd, const struct iovec *iov, int iovcnt,

 off_t offset, int flags);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 preadv(), pwritev():

 Since glibc 2.19:

 _DEFAULT_SOURCE

 Glibc 2.19 and earlier:

 _BSD_SOURCE

DESCRIPTION Page 1/6

 The readv() system call reads iovcnt buffers from the file associated

 with the file descriptor fd into the buffers described by iov ("scatter

 input").

 The writev() system call writes iovcnt buffers of data described by iov

 to the file associated with the file descriptor fd ("gather output").

 The pointer iov points to an array of iovec structures, defined in

 <sys/uio.h> as:

 struct iovec {

 void *iov_base; /* Starting address */

 size_t iov_len; /* Number of bytes to transfer */

 };

 The readv() system call works just like read(2) except that multiple

 buffers are filled.

 The writev() system call works just like write(2) except that multiple

 buffers are written out.

 Buffers are processed in array order. This means that readv() com?

 pletely fills iov[0] before proceeding to iov[1], and so on. (If there

 is insufficient data, then not all buffers pointed to by iov may be

 filled.) Similarly, writev() writes out the entire contents of iov[0]

 before proceeding to iov[1], and so on.

 The data transfers performed by readv() and writev() are atomic: the

 data written by writev() is written as a single block that is not in?

 termingled with output from writes in other processes (but see pipe(7)

 for an exception); analogously, readv() is guaranteed to read a con?

 tiguous block of data from the file, regardless of read operations per?

 formed in other threads or processes that have file descriptors refer?

 ring to the same open file description (see open(2)).

 preadv() and pwritev()

 The preadv() system call combines the functionality of readv() and

 pread(2). It performs the same task as readv(), but adds a fourth ar?

 gument, offset, which specifies the file offset at which the input op?

 eration is to be performed.

 The pwritev() system call combines the functionality of writev() and Page 2/6

 pwrite(2). It performs the same task as writev(), but adds a fourth

 argument, offset, which specifies the file offset at which the output

 operation is to be performed.

 The file offset is not changed by these system calls. The file re?

 ferred to by fd must be capable of seeking.

 preadv2() and pwritev2()

 These system calls are similar to preadv() and pwritev() calls, but add

 a fifth argument, flags, which modifies the behavior on a per-call ba?

 sis.

 Unlike preadv() and pwritev(), if the offset argument is -1, then the

 current file offset is used and updated.

 The flags argument contains a bitwise OR of zero or more of the follow?

 ing flags:

 RWF_DSYNC (since Linux 4.7)

 Provide a per-write equivalent of the O_DSYNC open(2) flag.

 This flag is meaningful only for pwritev2(), and its effect ap?

 plies only to the data range written by the system call.

 RWF_HIPRI (since Linux 4.6)

 High priority read/write. Allows block-based filesystems to use

 polling of the device, which provides lower latency, but may use

 additional resources. (Currently, this feature is usable only

 on a file descriptor opened using the O_DIRECT flag.)

 RWF_SYNC (since Linux 4.7)

 Provide a per-write equivalent of the O_SYNC open(2) flag. This

 flag is meaningful only for pwritev2(), and its effect applies

 only to the data range written by the system call.

 RWF_NOWAIT (since Linux 4.14)

 Do not wait for data which is not immediately available. If

 this flag is specified, the preadv2() system call will return

 instantly if it would have to read data from the backing storage

 or wait for a lock. If some data was successfully read, it will

 return the number of bytes read. If no bytes were read, it will

 return -1 and set errno to EAGAIN. Currently, this flag is Page 3/6

 meaningful only for preadv2().

 RWF_APPEND (since Linux 4.16)

 Provide a per-write equivalent of the O_APPEND open(2) flag.

 This flag is meaningful only for pwritev2(), and its effect ap?

 plies only to the data range written by the system call. The

 offset argument does not affect the write operation; the data is

 always appended to the end of the file. However, if the offset

 argument is -1, the current file offset is updated.

RETURN VALUE

 On success, readv(), preadv(), and preadv2() return the number of bytes

 read; writev(), pwritev(), and pwritev2() return the number of bytes

 written.

 Note that it is not an error for a successful call to transfer fewer

 bytes than requested (see read(2) and write(2)).

 On error, -1 is returned, and errno is set appropriately.

ERRORS

 The errors are as given for read(2) and write(2). Furthermore,

 preadv(), preadv2(), pwritev(), and pwritev2() can also fail for the

 same reasons as lseek(2). Additionally, the following errors are de?

 fined:

 EINVAL The sum of the iov_len values overflows an ssize_t value.

 EINVAL The vector count, iovcnt, is less than zero or greater than the

 permitted maximum.

 EOPNOTSUPP

 An unknown flag is specified in flags.

VERSIONS

 preadv() and pwritev() first appeared in Linux 2.6.30; library support

 was added in glibc 2.10.

 preadv2() and pwritev2() first appeared in Linux 4.6. Library support

 was added in glibc 2.26.

CONFORMING TO

 readv(), writev(): POSIX.1-2001, POSIX.1-2008, 4.4BSD (these system

 calls first appeared in 4.2BSD). Page 4/6

 preadv(), pwritev(): nonstandard, but present also on the modern BSDs.

 preadv2(), pwritev2(): nonstandard Linux extension.

NOTES

 POSIX.1 allows an implementation to place a limit on the number of

 items that can be passed in iov. An implementation can advertise its

 limit by defining IOV_MAX in <limits.h> or at run time via the return

 value from sysconf(_SC_IOV_MAX). On modern Linux systems, the limit is

 1024. Back in Linux 2.0 days, this limit was 16.

 C library/kernel differences

 The raw preadv() and pwritev() system calls have call signatures that

 differ slightly from that of the corresponding GNU C library wrapper

 functions shown in the SYNOPSIS. The final argument, offset, is un?

 packed by the wrapper functions into two arguments in the system calls:

 unsigned long pos_l, unsigned long pos

 These arguments contain, respectively, the low order and high order 32

 bits of offset.

 Historical C library/kernel differences

 To deal with the fact that IOV_MAX was so low on early versions of

 Linux, the glibc wrapper functions for readv() and writev() did some

 extra work if they detected that the underlying kernel system call

 failed because this limit was exceeded. In the case of readv(), the

 wrapper function allocated a temporary buffer large enough for all of

 the items specified by iov, passed that buffer in a call to read(2),

 copied data from the buffer to the locations specified by the iov_base

 fields of the elements of iov, and then freed the buffer. The wrapper

 function for writev() performed the analogous task using a temporary

 buffer and a call to write(2).

 The need for this extra effort in the glibc wrapper functions went away

 with Linux 2.2 and later. However, glibc continued to provide this be?

 havior until version 2.10. Starting with glibc version 2.9, the wrap?

 per functions provide this behavior only if the library detects that

 the system is running a Linux kernel older than version 2.6.18 (an ar?

 bitrarily selected kernel version). And since glibc 2.20 (which re? Page 5/6

 quires a minimum Linux kernel version of 2.6.32), the glibc wrapper

 functions always just directly invoke the system calls.

EXAMPLES

 The following code sample demonstrates the use of writev():

 char *str0 = "hello ";

 char *str1 = "world\n";

 struct iovec iov[2];

 ssize_t nwritten;

 iov[0].iov_base = str0;

 iov[0].iov_len = strlen(str0);

 iov[1].iov_base = str1;

 iov[1].iov_len = strlen(str1);

 nwritten = writev(STDOUT_FILENO, iov, 2);

SEE ALSO

 pread(2), read(2), write(2)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-12-21 READV(2)

Page 6/6

