r“‘ ,

University

FPDF Library

PDF generator

RedHat
Enterprise Linux

A

Manual Pages

Full credit is given to the above companies including the 0S
that this PDF file was generated!

Red Hat Enterprise Linux Release 9.2 Manual Pages on 'random.4' command
$ man random.4
RANDOM(4) Linux Programmer's Manual RANDOM(4)
NAME
random, urandom - kernel random number source devices
SYNOPSIS
#include <linux/random.h>
int ioctl(fd, RNDrequest, param);
DESCRIPTION
The character special files /dev/random and /dev/urandom (present since
Linux 1.3.30) provide an interface to the kernel's random number gener?
ator. The file /dev/random has major device number 1 and minor device
number 8. The file /dev/urandom has major device number 1 and minor
device number 9.
The random number generator gathers environmental noise from device
drivers and other sources into an entropy pool. The generator also
keeps an estimate of the number of bits of noise in the entropy pool.
From this entropy pool, random numbers are created.
Linux 3.17 and later provides the simpler and safer getrandom(2) inter?
face which requires no special files; see the getrandom(2) manual page
for details.
When read, the /dev/urandom device returns random bytes using a pseudo?
random number generator seeded from the entropy pool. Reads from this
device do not block (i.e., the CPU is not yielded), but can incur an

appreciable delay when requesting large amounts of data. Page 1/6

When read during early boot time, /dev/urandom may return data prior to
the entropy pool being initialized. If this is of concern in your ap?
plication, use getrandom(2) or /dev/random instead.

The /dev/irandom device is a legacy interface which dates back to a time
where the cryptographic primitives used in the implementation of
/dev/urandom were not widely trusted. It will return random bytes only
within the estimated number of bits of fresh noise in the entropy pool,
blocking if necessary. /dev/random is suitable for applications that
need high quality randomness, and can afford indeterminate delays.
When the entropy pool is empty, reads from /dev/random will block until

additional environmental noise is gathered. If open(2) is called for

/dev/random with the O_NONBLOCK flag, a subsequent read(2) will not

block if the requested number of bytes is not available. Instead, the
available bytes are returned. If no byte is available, read(2) will

return -1 and errno will be set to EAGAIN.

The O_NONBLOCK flag has no effect when opening /dev/urandom. When

calling read(2) for the device /dev/urandom, reads of up to 256 bytes
will return as many bytes as are requested and will not be interrupted
by a signal handler. Reads with a buffer over this limit may return
less than the requested number of bytes or fail with the error EINTR,
if interrupted by a signal handler.

Since Linux 3.16, a read(2) from /dev/urandom will return at most
32 MB. A read(2) from /dev/random will return at most 512 bytes (340
bytes on Linux kernels before version 2.6.12).

Writing to /dev/random or /dev/urandom will update the entropy pool
with the data written, but this will not result in a higher entropy
count. This means that it will impact the contents read from both

files, but it will not make reads from /dev/random faster.

Usage

The /dev/random interface is considered a legacy interface, and
/dev/urandom is preferred and sufficient in all use cases, with the ex?
ception of applications which require randomness during early boot

time; for these applications, getrandom(2) must be used instead, be?

Page 2/6

cause it will block until the entropy pool is initialized.
If a seed file is saved across reboots as recommended below, the output
is cryptographically secure against attackers without local root access
as soon as it is reloaded in the boot sequence, and perfectly adequate
for network encryption session keys. (All major Linux distributions
have saved the seed file across reboots since 2000 at least.) Since
reads from /dev/random may block, users will usually want to open it in
nonblocking mode (or perform a read with timeout), and provide some
sort of user naotification if the desired entropy is not immediately
available.
Configuration

If your system does not have /dev/random and /dev/urandom created al?
ready, they can be created with the following commands:

mknod -m 666 /dev/random c 1 8

mknod -m 666 /dev/urandom c 1 9

chown root:root /dev/random /dev/urandom
When a Linux system starts up without much operator interaction, the
entropy pool may be in a fairly predictable state. This reduces the
actual amount of noise in the entropy pool below the estimate. In or?
der to counteract this effect, it helps to carry entropy pool informa?
tion across shut-downs and start-ups. To do this, add the lines to an
appropriate script which is run during the Linux system start-up se?
guence:

echo "Initializing random number generator..."

random_seed=/var/run/random-seed

Carry a random seed from start-up to start-up

Load and then save the whole entropy pool

if [-f $random_seed]; then

cat $random_seed >/dev/urandom
else
touch $random_seed
fi

chmod 600 $random_seed Page 3/6

poolfile=/proc/sys/kernel/random/poolsize
[-r $poolfile] && bits=$(cat $poolfile) || bits=4096
bytes=$(expr $bits / 8)
dd if=/dev/urandom of=$random_seed count=1 bs=$bytes
Also, add the following lines in an appropriate script which is run
during the Linux system shutdown:
Carry a random seed from shut-down to start-up
Save the whole entropy pool
echo "Saving random seed..."
random_seed=/var/run/random-seed
touch $random_seed
chmod 600 $random_seed
poolfile=/proc/sys/kernel/random/poolsize
[-r $poolfile] && bits=$(cat $poolfile) || bits=4096
bytes=$(expr $hits / 8)
dd if=/dev/urandom of=$random_seed count=1 bs=$bytes
In the above examples, we assume Linux 2.6.0 or later, where
/proc/sys/kernel/random/poolsize returns the size of the entropy pool
in bits (see below).
/proc interfaces
The files in the directory /proc/sys/kernel/random (present since
2.3.16) provide additional information about the /dev/random device:
entropy_avail
This read-only file gives the available entropy, in bits. This
will be a number in the range 0 to 4096.
poolsize
This file gives the size of the entropy pool. The semantics of
this file vary across kernel versions:
Linux 2.4:
This file gives the size of the entropy pool in bytes.
Normally, this file will have the value 512, but it is
writable, and can be changed to any value for which an

algorithm is available. The choices are 32, 64, 128, Page 4/6

256, 512, 1024, or 2048.
Linux 2.6 and later:
This file is read-only, and gives the size of the entropy
pool in bits. It contains the value 4096.
read_wakeup_threshold
This file contains the number of bits of entropy required for
waking up processes that sleep waiting for entropy from
/devirandom. The default is 64.
write_wakeup_threshold
This file contains the number of bits of entropy below which we
wake up processes that do a select(2) or poll(2) for write ac?
cess to /dev/irandom. These values can be changed by writing to
the files.
uuid and boot_id
These read-only files contain random strings like
6fd5a44b-35f4-4ad4-a9b9-6b9bel3elfe9. The former is generated
afresh for each read, the latter was generated once.
ioctl(2) interface
The following ioctl(2) requests are defined on file descriptors con?
nected to either /dev/random or /dev/urandom. All requests performed
will interact with the input entropy pool impacting both /dev/random
and /dev/urandom. The CAP_SYS_ADMIN capability is required for all re?
quests except RNDGETENTCNT.
RNDGETENTCNT
Retrieve the entropy count of the input pool, the contents will
be the same as the entropy_avail file under proc. The result
will be stored in the int pointed to by the argument.
RNDADDTOENTCNT
Increment or decrement the entropy count of the input pool by
the value pointed to by the argument.
RNDGETPOOL
Removed in Linux 2.6.9.

RNDADDENTROPY Page 5/6

Add some additional entropy to the input pool, incrementing the
entropy count. This differs from writing to /dev/random or
/dev/urandom, which only adds some data but does not increment
the entropy count. The following structure is used:
struct rand_pool_info {
int entropy_count;
int buf_size;
_u32 buff0];
h
Here entropy_count is the value added to (or subtracted from)
the entropy count, and buf is the buffer of size buf_size which
gets added to the entropy pool.
RNDZAPENTCNT, RNDCLEARPOOL
Zero the entropy count of all pools and add some system data
(such as wall clock) to the pools.
FILES
/dev/random
/dev/urandom
NOTES
For an overview and comparison of the various interfaces that can be
used to obtain randomness, see random(7).
BUGS
During early boot time, reads from /dev/urandom may return data prior
to the entropy pool being initialized.
SEE ALSO
mknod(1), getrandom(2), random(7)
RFC 1750, "Randomness Recommendations for Security"
COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A
description of the project, information about reporting bugs, and the
latest version of this page, can be found at
https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 RANDOM(4)

Page 6/6

