
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'read.2' command

$ man read.2

READ(2) Linux Programmer's Manual READ(2)

NAME

 read - read from a file descriptor

SYNOPSIS

 #include <unistd.h>

 ssize_t read(int fd, void *buf, size_t count);

DESCRIPTION

 read() attempts to read up to count bytes from file descriptor fd into

 the buffer starting at buf.

 On files that support seeking, the read operation commences at the file

 offset, and the file offset is incremented by the number of bytes read.

 If the file offset is at or past the end of file, no bytes are read,

 and read() returns zero.

 If count is zero, read() may detect the errors described below. In the

 absence of any errors, or if read() does not check for errors, a read()

 with a count of 0 returns zero and has no other effects.

 According to POSIX.1, if count is greater than SSIZE_MAX, the result is

 implementation-defined; see NOTES for the upper limit on Linux.

RETURN VALUE

 On success, the number of bytes read is returned (zero indicates end of

 file), and the file position is advanced by this number. It is not an

 error if this number is smaller than the number of bytes requested;

 this may happen for example because fewer bytes are actually available Page 1/4

 right now (maybe because we were close to end-of-file, or because we

 are reading from a pipe, or from a terminal), or because read() was in?

 terrupted by a signal. See also NOTES.

 On error, -1 is returned, and errno is set appropriately. In this

 case, it is left unspecified whether the file position (if any)

 changes.

ERRORS

 EAGAIN The file descriptor fd refers to a file other than a socket and

 has been marked nonblocking (O_NONBLOCK), and the read would

 block. See open(2) for further details on the O_NONBLOCK flag.

 EAGAIN or EWOULDBLOCK

 The file descriptor fd refers to a socket and has been marked

 nonblocking (O_NONBLOCK), and the read would block.

 POSIX.1-2001 allows either error to be returned for this case,

 and does not require these constants to have the same value, so

 a portable application should check for both possibilities.

 EBADF fd is not a valid file descriptor or is not open for reading.

 EFAULT buf is outside your accessible address space.

 EINTR The call was interrupted by a signal before any data was read;

 see signal(7).

 EINVAL fd is attached to an object which is unsuitable for reading; or

 the file was opened with the O_DIRECT flag, and either the ad?

 dress specified in buf, the value specified in count, or the

 file offset is not suitably aligned.

 EINVAL fd was created via a call to timerfd_create(2) and the wrong

 size buffer was given to read(); see timerfd_create(2) for fur?

 ther information.

 EIO I/O error. This will happen for example when the process is in

 a background process group, tries to read from its controlling

 terminal, and either it is ignoring or blocking SIGTTIN or its

 process group is orphaned. It may also occur when there is a

 low-level I/O error while reading from a disk or tape. A fur?

 ther possible cause of EIO on networked filesystems is when an Page 2/4

 advisory lock had been taken out on the file descriptor and this

 lock has been lost. See the Lost locks section of fcntl(2) for

 further details.

 EISDIR fd refers to a directory.

 Other errors may occur, depending on the object connected to fd.

CONFORMING TO

 SVr4, 4.3BSD, POSIX.1-2001.

NOTES

 The types size_t and ssize_t are, respectively, unsigned and signed in?

 teger data types specified by POSIX.1.

 On Linux, read() (and similar system calls) will transfer at most

 0x7ffff000 (2,147,479,552) bytes, returning the number of bytes actu?

 ally transferred. (This is true on both 32-bit and 64-bit systems.)

 On NFS filesystems, reading small amounts of data will update the time?

 stamp only the first time, subsequent calls may not do so. This is

 caused by client side attribute caching, because most if not all NFS

 clients leave st_atime (last file access time) updates to the server,

 and client side reads satisfied from the client's cache will not cause

 st_atime updates on the server as there are no server-side reads. UNIX

 semantics can be obtained by disabling client-side attribute caching,

 but in most situations this will substantially increase server load and

 decrease performance.

BUGS

 According to POSIX.1-2008/SUSv4 Section XSI 2.9.7 ("Thread Interactions

 with Regular File Operations"):

 All of the following functions shall be atomic with respect to each

 other in the effects specified in POSIX.1-2008 when they operate on

 regular files or symbolic links: ...

 Among the APIs subsequently listed are read() and readv(2). And among

 the effects that should be atomic across threads (and processes) are

 updates of the file offset. However, on Linux before version 3.14,

 this was not the case: if two processes that share an open file de?

 scription (see open(2)) perform a read() (or readv(2)) at the same Page 3/4

 time, then the I/O operations were not atomic with respect updating the

 file offset, with the result that the reads in the two processes might

 (incorrectly) overlap in the blocks of data that they obtained. This

 problem was fixed in Linux 3.14.

SEE ALSO

 close(2), fcntl(2), ioctl(2), lseek(2), open(2), pread(2), readdir(2),

 readlink(2), readv(2), select(2), write(2), fread(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2018-02-02 READ(2)

Page 4/4

