
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'regex.3' command

$ man regex.3

REGEX(3) Linux Programmer's Manual REGEX(3)

NAME

 regcomp, regexec, regerror, regfree - POSIX regex functions

SYNOPSIS

 #include <regex.h>

 int regcomp(regex_t *preg, const char *regex, int cflags);

 int regexec(const regex_t *preg, const char *string, size_t nmatch,

 regmatch_t pmatch[], int eflags);

 size_t regerror(int errcode, const regex_t *preg, char *errbuf,

 size_t errbuf_size);

 void regfree(regex_t *preg);

DESCRIPTION

 POSIX regex compiling

 regcomp() is used to compile a regular expression into a form that is

 suitable for subsequent regexec() searches.

 regcomp() is supplied with preg, a pointer to a pattern buffer storage

 area; regex, a pointer to the null-terminated string and cflags, flags

 used to determine the type of compilation.

 All regular expression searching must be done via a compiled pattern

 buffer, thus regexec() must always be supplied with the address of a

 regcomp() initialized pattern buffer.

 cflags is the bitwise-or of zero or more of the following:

 REG_EXTENDED Page 1/7

 Use POSIX Extended Regular Expression syntax when interpreting

 regex. If not set, POSIX Basic Regular Expression syntax is

 used.

 REG_ICASE

 Do not differentiate case. Subsequent regexec() searches using

 this pattern buffer will be case insensitive.

 REG_NOSUB

 Do not report position of matches. The nmatch and pmatch argu?

 ments to regexec() are ignored if the pattern buffer supplied

 was compiled with this flag set.

 REG_NEWLINE

 Match-any-character operators don't match a newline.

 A nonmatching list ([^...]) not containing a newline does not

 match a newline.

 Match-beginning-of-line operator (^) matches the empty string

 immediately after a newline, regardless of whether eflags, the

 execution flags of regexec(), contains REG_NOTBOL.

 Match-end-of-line operator ($) matches the empty string immedi?

 ately before a newline, regardless of whether eflags contains

 REG_NOTEOL.

 POSIX regex matching

 regexec() is used to match a null-terminated string against the precom?

 piled pattern buffer, preg. nmatch and pmatch are used to provide in?

 formation regarding the location of any matches. eflags is the bit?

 wise-or of zero or more of the following flags:

 REG_NOTBOL

 The match-beginning-of-line operator always fails to match (but

 see the compilation flag REG_NEWLINE above). This flag may be

 used when different portions of a string are passed to regexec()

 and the beginning of the string should not be interpreted as the

 beginning of the line.

 REG_NOTEOL

 The match-end-of-line operator always fails to match (but see Page 2/7

 the compilation flag REG_NEWLINE above).

 REG_STARTEND

 Use pmatch[0] on the input string, starting at byte

 pmatch[0].rm_so and ending before byte pmatch[0].rm_eo. This

 allows matching embedded NUL bytes and avoids a strlen(3) on

 large strings. It does not use nmatch on input, and does not

 change REG_NOTBOL or REG_NEWLINE processing. This flag is a BSD

 extension, not present in POSIX.

 Byte offsets

 Unless REG_NOSUB was set for the compilation of the pattern buffer, it

 is possible to obtain match addressing information. pmatch must be di?

 mensioned to have at least nmatch elements. These are filled in by

 regexec() with substring match addresses. The offsets of the subex?

 pression starting at the ith open parenthesis are stored in pmatch[i].

 The entire regular expression's match addresses are stored in

 pmatch[0]. (Note that to return the offsets of N subexpression

 matches, nmatch must be at least N+1.) Any unused structure elements

 will contain the value -1.

 The regmatch_t structure which is the type of pmatch is defined in

 <regex.h>.

 typedef struct {

 regoff_t rm_so;

 regoff_t rm_eo;

 } regmatch_t;

 Each rm_so element that is not -1 indicates the start offset of the

 next largest substring match within the string. The relative rm_eo el?

 ement indicates the end offset of the match, which is the offset of the

 first character after the matching text.

 POSIX error reporting

 regerror() is used to turn the error codes that can be returned by both

 regcomp() and regexec() into error message strings.

 regerror() is passed the error code, errcode, the pattern buffer, preg,

 a pointer to a character string buffer, errbuf, and the size of the Page 3/7

 string buffer, errbuf_size. It returns the size of the errbuf required

 to contain the null-terminated error message string. If both errbuf

 and errbuf_size are nonzero, errbuf is filled in with the first er?

 rbuf_size - 1 characters of the error message and a terminating null

 byte ('\0').

 POSIX pattern buffer freeing

 Supplying regfree() with a precompiled pattern buffer, preg will free

 the memory allocated to the pattern buffer by the compiling process,

 regcomp().

RETURN VALUE

 regcomp() returns zero for a successful compilation or an error code

 for failure.

 regexec() returns zero for a successful match or REG_NOMATCH for fail?

 ure.

ERRORS

 The following errors can be returned by regcomp():

 REG_BADBR

 Invalid use of back reference operator.

 REG_BADPAT

 Invalid use of pattern operators such as group or list.

 REG_BADRPT

 Invalid use of repetition operators such as using '*' as the

 first character.

 REG_EBRACE

 Un-matched brace interval operators.

 REG_EBRACK

 Un-matched bracket list operators.

 REG_ECOLLATE

 Invalid collating element.

 REG_ECTYPE

 Unknown character class name.

 REG_EEND

 Nonspecific error. This is not defined by POSIX.2. Page 4/7

 REG_EESCAPE

 Trailing backslash.

 REG_EPAREN

 Un-matched parenthesis group operators.

 REG_ERANGE

 Invalid use of the range operator; for example, the ending point

 of the range occurs prior to the starting point.

 REG_ESIZE

 Compiled regular expression requires a pattern buffer larger

 than 64 kB. This is not defined by POSIX.2.

 REG_ESPACE

 The regex routines ran out of memory.

 REG_ESUBREG

 Invalid back reference to a subexpression.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?regcomp(), regexec() ? Thread safety ? MT-Safe locale ?

 ??

 ?regerror() ? Thread safety ? MT-Safe env ?

 ??

 ?regfree() ? Thread safety ? MT-Safe ?

 ??

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008.

EXAMPLES

 #include <stdint.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <regex.h> Page 5/7

 #define ARRAY_SIZE(arr) (sizeof((arr)) / sizeof((arr)[0]))

 static const char *const str =

 "1) John Driverhacker;\n2) John Doe;\n3) John Foo;\n";

 static const char *const re = "John.*o";

 int main(void)

 {

 static const char *s = str;

 regex_t regex;

 regmatch_t pmatch[1];

 regoff_t off, len;

 if (regcomp(®ex, re, REG_NEWLINE))

 exit(EXIT_FAILURE);

 printf("String = \"%s\"\n", str);

 printf("Matches:\n");

 for (int i = 0; ; i++) {

 if (regexec(®ex, s, ARRAY_SIZE(pmatch), pmatch, 0))

 break;

 off = pmatch[0].rm_so + (s - str);

 len = pmatch[0].rm_eo - pmatch[0].rm_so;

 printf("#%d:\n", i);

 printf("offset = %jd; length = %jd\n", (intmax_t) off,

 (intmax_t) len);

 printf("substring = \"%.*s\"\n", len, s + pmatch[0].rm_so);

 s += pmatch[0].rm_eo;

 }

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 grep(1), regex(7)

 The glibc manual section, Regular Expressions

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the Page 6/7

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

GNU 2020-08-13 REGEX(3)

Page 7/7

