r“‘ ,

University

FPDF Library

RedHat
Enterprise Linux

PDF generator
i,

Manual Pages

Full credit is given to the above companies including the 0S
that this PDF file was generated!

Red Hat Enterprise Linux Release 9.2 Manual Pages on 'remque.3' command

$ man remque.3

INSQUE(3) Linux Programmer's Manual INSQUE(3)
NAME
insque, remque - insert/remove an item from a queue
SYNOPSIS
#include <search.h>
void insque(void *elem, void *prev);
void remque(void *elem);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):
insque(), remque():
_XOPEN_SOURCE >= 500
|| /* Glibc since 2.19: */ _DEFAULT_SOURCE
|| 7* Glibc versions <=2.19: */ _SVID_SOURCE
DESCRIPTION
The insque() and remque() functions manipulate doubly linked lists.
Each element in the list is a structure of which the first two elements
are a forward and a backward pointer. The linked list may be linear
(i.e., NULL forward pointer at the end of the list and NULL backward
pointer at the start of the list) or circular.
The insque() function inserts the element pointed to by elem immedi?
ately after the element pointed to by prev.
If the list is linear, then the call insque(elem, NULL) can be used to
insert the initial list element, and the call sets the forward and

backward pointers of elem to NULL. Page 1/5

If the list is circular, the caller should ensure that the forward and
backward pointers of the first element are initialized to point to that
element, and the prev argument of the insque() call should also point
to the element.
The remque() function removes the element pointed to by elem from the
doubly linked list.

ATTRIBUTES
For an explanation of the terms used in this section, see at?

tributes(7).

PPV 2?7???7?7??7?7??7??77?7???7??7?7?7?7

?Interface ? Attribute ? Value ?

PPV ????7?77???7?7??7?7??7??77?7???7??7?7?7?7

?insque(), remque() ? Thread safety ? MT-Safe ?

PPV ????7?77???7?7??7?7??7??77?7??7?7??77?7?7

CONFORMING TO
POSIX.1-2001, POSIX.1-2008.
NOTES
On ancient systems, the arguments of these functions were of type
struct gelem *, defined as:
struct gelem {
struct gelem *q_forw;
struct gelem *q_back;
char g_data[1];
¥
This is still what you will get if _ GNU_SOURCE is defined before in?
cluding <search.h>.
The location of the prototypes for these functions differs among sev?
eral versions of UNIX. The above is the POSIX version. Some systems
place them in <string.h>.
BUGS
In glibc 2.4 and earlier, it was not possible to specify prev as NULL.
Consequently, to build a linear list, the caller had to build a list

using an initial call that contained the first two elements of the Page 2/5

list, with the forward and backward pointers in each element suitably
initialized.
EXAMPLES
The program below demonstrates the use of insque(). Here is an example
run of the program:
$.Jaout-cabc
Traversing completed list:
a
b
c
That was a circular list
Program source
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <search.h>
struct element {
struct element *forward,;
struct element *backward;
char *name;
2
static struct element *
new_element(void)
{
struct element *e = malloc(sizeof(*e));
if (e == NULL) {
fprintf(stderr, "malloc() failed\n");
exit(EXIT_FAILURE);

}

return e;

int

main(int argc, char *argv[]) Page 3/5

struct element *first, *elem, *prev;

int circular, opt, errfnd;

[* The "-¢" command-line option can be used to specify that the

listis circular */
errfnd = 0;
circular = 0;
while ((opt = getopt(argc, argv, "c")) I=-1) {
switch (opt) {
case 'c":
circular = 1;
break;
default:
errfnd = 1;

break;

}
if (errfnd || optind >= argc) {
fprintf(stderr, "Usage: %s [-c] string...\n", argv[0]);
exit(EXIT_FAILURE);
}
[* Create first element and place it in the linked list */
elem = new_element();
first = elem;
elem->name = argv[optind];
if (circular) {
elem->forward = elem;
elem->backward = elem;
insque(elem, elem);
}else {
insque(elem, NULL);
}

/* Add remaining command-line arguments as list elements */

Page 4/5

while (++optind < argc) {
prev = elem;
elem = new_element();
elem->name = argv[optind];
insque(elem, prev);
}
/* Traverse the list from the start, printing element names */
printf("Traversing completed list:\n");
elem = first;
do {
printf(" %s\n", elem->name);
elem = elem->forward;
} while (elem != NULL && elem != first);
if (elem == first)
printf("That was a circular list\n");
exit(EXIT_SUCCESS);
}
SEE ALSO
queue(7)
COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A
description of the project, information about reporting bugs, and the
latest version of this page, can be found at
https://lwww.kernel.org/doc/man-pages/.

2020-11-01 INSQUE(3)

Page 5/5

