Red Hat Enterprise Linux Release 9.2 Manual Pages on 'rksh.1' command

$ man rksh.1

KSH(1)

NAME

r“‘ ,

University

FPDF Library

RedHat
Enterprise Linux

PDF generator
i,

Manual Pages

Full credit is given to the above companies including the 0S
that this PDF file was generated!

General Commands Manual KSH(1)

ksh, rksh - KornShell, a standard/restricted command and programming

language

SYNOPSIS

ksh [?abcefhikimnprstuvxBCDEGH] [0 option] ...[-][arg ...]

rksh [?abcefhikimnpstuvxBCDEGH][?0 option] ...[-][arg ...]

DESCRIPTION

Ksh is a command and programming language that executes commands read

from a terminal or a file. Rksh is a restricted version of the command
interpreter ksh; it is used to set up login names and execution envi?
ronments whose capabilities are more controlled than those of the stan?
dard shell. See Invocation below for the meaning of arguments to the

shell.

Definitions.

A metacharacter is one of the following characters:
7 & () | < > new-line space tab
A blank is a tab or a space. An identifier is a sequence of letters,

digits, or underscores starting with a letter or underscore. Identi?

fiers are used as components of variable names. A vname is a sequence

of one or more identifiers separated by a . and optionally preceded by
a .. Vnames are used as function and variable names. A word is a se?

guence of characters from the character set defined by the current l0?

Page 1/97

cale, excluding non-quoted metacharacters.
A command is a sequence of characters in the syntax of the shell lan?
guage. The shell reads each command and carries out the desired action
either directly or by invoking separate utilities. A built-in command
is a command that is carried out by the shell itself without creating a
separate process. Some commands are built-in purely for convenience
and are not documented here. Built-ins that cause side effects in the
shell environment and built-ins that are found before performing a path
search (see Execution below) are documented here. For historical rea?
sons, some of these built-ins behave differently than other built-ins
and are called special built-ins.

Commands.

A simple-command is a list of variable assignments (see Variable As?

signments below) or a sequence of blank separated words which may be

preceded by a list of variable assignments (see Environment below).
The first word specifies the name of the command to be executed. Ex?

cept as specified below, the remaining words are passed as arguments to

the invoked command. The command name is passed as argument O (see

exec(2)). The value of a simple-command is its exit status; 0-255 if

it terminates normally; 256+signum if it terminates abnormally (the
name of the signal corresponding to the exit status can be obtained via
the -1 option of the kill built-in utility).

A pipeline is a sequence of one or more commands separated by |. The

standard output of each command but the last is connected by a pipe(2)

to the standard input of the next command. Each command, except possi?

bly the last, is run as a separate process; the shell waits for the

last command to terminate. The exit status of a pipeline is the exit
status of the last command unless the pipefail option is enabled. Each
pipeline can be preceded by the reserved word ! which causes the exit
status of the pipeline to become O if the exit status of the last com?
mand is non-zero, and 1 if the exit status of the last command is O.

A list is a sequence of one or more pipelines separated by ;, &, |&,

&&, or ||, and optionally terminated by ;, & or |& Of these five

Page 2/97

symbols, ;, &, and |& have equal precedence, which is lower than that
of && and ||. The symbols && and || also have equal precedence. A
semicolon (;) causes sequential execution of the preceding pipeline; an
ampersand (&) causes asynchronous execution of the preceding pipeline
(i.e., the shell does not wait for that pipeline to finish). The sym?
bol |& causes asynchronous execution of the preceding pipeline with a
two-way pipe established to the parent shell; the standard input and
output of the spawned pipeline can be written to and read from by the
parent shell by applying the redirection operators <& and >& with arg p
to commands and by using -p option of the built-in commands read and
print described later. The symbol && (||) causes the list following it
to be executed only if the preceding pipeline returns a zero (non-zero)
value. One or more new-lines may appear in a list instead of a semi?
colon, to delimit a command. The first item of the first pipeline of
a list that is a simple command not beginning with a redirection, and
not occurring within a while, until, or if list, can be preceded by a
semicolon. This semicolon is ignored unless the showme option is en?
abled as described with the set built-in below.
A command is either a simple-command or one of the following. Unless
otherwise stated, the value returned by a command is that of the last
simple-command executed in the command.
for vname [in word ...] ;do list ;done
Each time a for command is executed, vname is set to the next
word taken from the in word list. If in word ... is omitted,
then the for command executes the do list once for each posi?
tional parameter that is set starting from 1 (see Parameter Ex?
pansion below). Execution ends when there are no more words in
the list.
for (([exprl] ; [expr2] ; [expr3])) ;do list ;done
The arithmetic expression exprl is evaluated first (see Arith?
metic evaluation below). The arithmetic expression expr2 is re?
peatedly evaluated until it evaluates to zero and when non-zero,

list is executed and the arithmetic expression expr3 evaluated.

Page 3/97

If any expression is omitted, then it behaves as if it evaluated
to 1.

select vname [in word ...] ;do list ;done
A select command prints on standard error (file descriptor 2)
the set of words, each preceded by a number. If in word ... is
omitted, then the positional parameters starting from 1 are used
instead (see Parameter Expansion below). The PS3 promptis
printed and a line is read from the standard input. If this
line consists of the number of one of the listed words, then the
value of the variable vname is set to the word corresponding to
this number. If this line is empty, the selection list is
printed again. Otherwise the value of the variable vname is set
to null. The contents of the line read from standard input is
saved in the variable REPLY. The list is executed for each se?
lection until a break or end-of-file is encountered. If the RE?
PLY variable is set to null by the execution of list, then the
selection list is printed before displaying the PS3 prompt for
the next selection.

case word in [[(Jpattern [| pattern] ...) list;;] ... esac
A case command executes the list associated with the first pat?
tern that matches word. The form of the patterns is the same as
that used for file name generation (see File Name Generation be?
low). The ;; operator causes execution of case to terminate.
If ;& is used in place of ;; the next subsequent list, if any,
is executed.

if list ;then list [;elif list ;then list] ... [;else list] ;fi
The list following if is executed and, if it returns a zero exit
status, the list following the first then is executed. Other?
wise, the list following elif is executed and, if its value is
zero, the list following the next then is executed. Failing
each successive elif list, the else list is executed. If the if
list has non-zero exit status and there is no else list, then

the if command returns a zero exit status. Page 4/97

while list ;do list ;done

until list ;do list ;done

A while command repeatedly executes the while list and, if the
exit status of the last command in the list is zero, executes

the do list; otherwise the loop terminates. If no commands in
the do list are executed, then the while command returns a zero
exit status; until may be used in place of while to negate the

loop termination test.

((expression))

The expression is evaluated using the rules for arithmetic eval?
uation described below. If the value of the arithmetic expres?
sion is non-zero, the exit status is 0, otherwise the exit sta?

tusis 1.

Execute list in a separate environment. Note, that if two adja?
cent open parentheses are needed for nesting, a space must be
inserted to avoid evaluation as an arithmetic command as de?

scribed above.

{ list;}

list is simply executed. Note that unlike the metacharacters (
and), {and } are reserved words and must occur at the begin?

ning of a line or after a ; in order to be recognized.

[[expression]

Evaluates expression and returns a zero exit status when expres?
sion is true. See Conditional Expressions below, for a descrip?

tion of expression.

function varname { list ;}

varname () { list ;}

Define a function which is referenced by varname. A function
whose varname contains a . is called a discipline function and
the portion of the varname preceding the last. must refer to
an existing variable. The body of the function is the list of

commands between { and }. A function defined with the function

Page 5/97

varname syntax can also be used as an argument to the . special
built-in command to get the equivalent behavior as if the var?
name() syntax were used to define it. (See Functions below.)
namespace identifier { list ;}
Defines or uses the name space identifier and runs the commands
in list in this name space. (See Name Spaces below.)
& [name [arg...]]
Causes subsequent list commands terminated by & to be placed in
the background job pool name. If name is omitted a default un?
named pool is used. Commands in a named background pool may be
executed remotely.
time [pipeline]
If pipeline is omitted the user and system time for the current
shell and completed child processes is printed on standard er?
ror. Otherwise, pipeline is executed and the elapsed time as
well as the user and system time are printed on standard error.
The TIMEFORMAT variable may be set to a format string that spec?
ifies how the timing information should be displayed. See Shell
Variables below for a description of the TIMEFORMAT variable.
The following reserved words are recognized as reserved only when they
are the first word of a command and are not quoted:
if then else elif fi case esac for while until do done { } function se?
lecttime [[]] !
Variable Assignments.
One or more variable assignments can start a simple command or can be
arguments to the typeset, enum, export, or readonly special built-in
commands as well as to other declaration commands created as types.
The syntax for an assignment is of the form:
varname=word
varname[word]=word
No space is permitted between varname and the = or between = and
word.

varname=(assign_list)

Page 6/97

No space is permitted between varname and the =. The variable
varname is unset before the assignment. An assign_list can be
one of the following:
word ...
Indexed array assignment.
[word]=word ...
Associative array assignment. If preceded by
typeset -a this will create an indexed array in?
stead.
assignment ...
Compound variable assignment. This creates a
compound variable varname with sub-variables of
the form varname.name, where name is the name
portion of assignment. The value of varname will
contain all the assignment elements. Additional
assignments made to sub-variables of varname will
also be displayed as part of the value of var?
name. If no assignments are specified, varname
will be a compound variable allowing subsequence
child elements to be defined.
typeset [options] assignment ...
Nested variable assignment. Multiple assignments
can be specified by separating each of them with
a ;. The previous value is unset before the as?
signment. Other declaration commands such as
readonly, enum, and other declaration commands
can be used in place of typeset.
. filename
Include the assignment commands contained in
filename.
In addition, a += can be used in place of the = to signify adding to or
appending to the previous value. When += is applied to an arithmetic

type, word is evaluated as an arithmetic expression and added to the

Page 7/97

current value. When applied to a string variable, the value defined by
word is appended to the value. For compound assignments, the previous
value is not unset and the new values are appended to the current ones
provided that the types are compatible.
The right hand side of a variable assignment undergoes all the expan?
sion listed below except word splitting, brace expansion, and file name
generation. When the left hand side is an assignment is a compound
variable and the right hand is the name of a compound variable, the
compound variable on the right will be copied or appended to the com?
pound variable on the left.

Comments.
A word beginning with # causes that word and all the following charac?
ters up to a new-line to be ignored.

Aliasing.
The first word of each command is replaced by the text of an alias if
an alias for this word has been defined. An alias name consists of any
number of characters excluding metacharacters, quoting characters, file
expansion characters, parameter expansion and command substitution
characters, the characters / and =. The replacement string can contain
any valid shell script including the metacharacters listed above. The
first word of each command in the replaced text, other than any that
are in the process of being replaced, will be tested for aliases. If
the last character of the alias value is a blank then the word follow?
ing the alias will also be checked for alias substitution. Aliases can
be used to redefine built-in commands but cannot be used to redefine
the reserved words listed above. Aliases can be created and listed
with the alias command and can be removed with the unalias command.
Aliasing is performed when scripts are read, not while they are exe?
cuted. Therefore, for an alias to take effect, the alias definition
command has to be executed before the command which references the
alias is read.
The following aliases are automatically preset when the shell is in?

voked as an interactive shell, unless invoked in POSIX compliance mode Page 8/97

(see Invocation below). Preset aliases can be unset or redefined.
history="7hist -I?
r=?hist -s?
Tilde Expansion.
After alias substitution is performed, each word is checked to see if
it begins with an unquoted ?. For tilde expansion, word also refers to
the word portion of parameter expansion (see Parameter Expansion be?
low). If a word is preceded by a tilde, then it is checked up to a /
to see if it matches a user name in the password database (see getpw?
name(3)). If a match is found, the ? and the matched login name are
replaced by the login directory of the matched user. If no match is
found, the original text is left unchanged. A ? by itself, or in front
of a /, is replaced by $HOME, unless the HOME variable is unset, in
which case the current user's home directory as configured in the oper?
ating system is used. A ? followed by a + or - is replaced by $PWD or
$OLDPWD respectively.
In addition, when expanding a variable assignment (see Variable Assign?
ments above), tilde expansion is attempted when the value of the as?
signment begins with a ?, and when a ? appears aftera ;. A : also
terminates a user name following a ?.
The tilde expansion mechanism may be extended or modified by defining
one of the discipline functions .sh.tilde.set or .sh.tilde.get (see
Functions and Discipline Functions below). If either exists, then upon
encountering a tilde word to expand, that function is called with the
tilde word assigned to either .sh.value (for the .sh.tilde.set func?
tion) or .sh.tilde (for the .sh.tilde.get function). Performing tilde
expansion within a discipline function will not recursively call that
function, but default tilde expansion remains active, so literal tildes
should still be quoted where required. Either function may assign a
replacement string to .sh.value. If this value is non-empty and does
not start with a ?, it replaces the default tilde expansion when the
function terminates. Otherwise, the tilde expansion is left unchanged.

Command Substitution. Page 9/97

The standard output from a command list enclosed in parentheses pre?
ceded by a dollar sign ($(list)), or in a brace group preceded by a
dollar sign (${ list;}), or in a pair of grave accents (") may be

used as part or all of a word; trailing new-lines are removed. In the
second case, the { and } are treated as a reserved words so that { must
be followed by a blank and } must appear at the beginning of the line

or follow a ;. In the third (obsolete) form, the string between the

guotes is processed for special quoting characters before the command
is executed (see Quoting below). The command substitution $(cat file)
can be replaced by the equivalent but faster $(<file). The command
substitution $(n<#) will expand to the current byte offset for file de?
scriptor n. Except for the second form, the command list is run in a
subshell so that no side effects are possible. For the second form,

the final } will be recognized as a reserved word after any token.

Arithmetic Substitution.

An arithmetic expression enclosed in double parentheses preceded by a
dollar sign ($(())) is replaced by the value of the arithmetic ex?

pression within the double parentheses.

Process Substitution.

Each command argument of the form <(list) or >(list) will run process
list asynchronously connected to some file in /dev/fd if this directory
exists, or else a fifo a temporary directory. The name of this file
will become the argument to the command. If the form with > is se?
lected then writing on this file will provide input for list. If <is
used, then the file passed as an argument will contain the output of
the list process. For example,
paste <(cut -f1 filel) <(cut -f3 file2) |tee >(processl)
>(process?2)
cuts fields 1 and 3 from the files filel and file2 respectively, pastes
the results together, and sends it to the processes processl and
process2, as well as putting it onto the standard output. Note that
the file, which is passed as an argument to the command, is a UNIX

pipe(2) so programs that expect to Iseek(2) on the file will not work.

Page 10/97

Process substitution of the form <(list) can also be used with the <
redirection operator which causes the output of list to be standard in?
put or the input for whatever file descriptor is specified.

Parameter Expansion.
A parameter is a variable, one or more digits, or any of the characters
* @, # ?, -, % and!. Avariable is denoted by a vname. To create
a variable whose vname contains a ., a variable whose vname consists of
everything before the last . must already exist. A variable has a
value and zero or more attributes. Variables can be assigned values
and attributes by using the typeset special built-in command. The at?
tributes supported by the shell are described later with the typeset
special built-in command. Exported variables pass their attributes to
the environment so that a newly invoked ksh that is a child or exec'ed
process of the current shell will automatically import them, unless the
posix shell option is on.
The shell supports both indexed and associative arrays. An element of
an array variable is referenced by a subscript. A subscript for an in?
dexed array is denoted by an arithmetic expression (see Arithmetic
evaluation below) between a [and a]. To assign values to an indexed
array, use vname=(value ...) or set -A vname value The value of
all non-negative subscripts must be in the range of 0 through
4,194,303. A negative subscript is treated as an offset from the maxi?
mum current index +1 so that -1 refers to the last element. Indexed
arrays can be declared with the -a option to typeset. Indexed arrays
need not be declared. Any reference to a variable with a valid sub?
script is legal and an array will be created if necessary.
An associative array is created with the -A option to typeset. A sub?
script for an associative array is denoted by a string enclosed between
[and].
Referencing any array without a subscript is equivalent to referencing
the array with subscript 0.
The value of a variable may be assigned by writing:

vhame=value [vname=value] ... Page 11/97

or
vhame[subscript]=value [vname[subscript]=value] ...
Note that no space is allowed before or after the =.
Attributes assigned by the typeset special built-in command apply to
all elements of the array. An array element can be a simple variable,
a compound variable or an array variable. An element of an indexed ar?
ray can be either an indexed array or an associative array. An element
of an associative array can also be either. To refer to an array ele?
ment that is part of an array element, concatenate the subscript in
brackets. For example, to refer to the foobar element of an associa?
tive array that is defined as the third element of the indexed array,
use ${vnamel[3][foobar]}
A nameref is a variable that is a reference to another variable. A
nameref is created with the -n attribute of typeset. The value of the
variable at the time of the typeset command becomes the variable that
will be referenced whenever the nameref variable is used. The name of
a nameref cannot contain a .. When a variable or function name con?
tains a ., and the portion of the name up to the first . matches the
name of a nameref, the variable referred to is obtained by replacing
the nameref portion with the name of the variable referenced by the
nameref. If a namerefis used as the index of a for loop, a name ref?
erence is established for each item in the list. A nameref provides a
convenient way to refer to the variable inside a function whose name is
passed as an argument to a function. For example, if the name of a
variable is passed as the first argument to a function, the command
typeset -n var=$1
inside the function causes references and assignments to var to be ref?
erences and assignments to the variable whose name has been passed to
the function.
If any of the floating point attributes, -E, -F, or -X, or the integer
attribute, -i, is set for vname, then the value is subject to arith?
metic evaluation as described below.

Positional parameters, parameters denoted by a number, may be assigned

Page 12/97

values with the set special built-in command. Parameter $0 is set from

argument zero when the shell is invoked.

The character $ is used to introduce substitutable parameters.

${parameter}
The shell reads all the characters from ${ to the matching } as
part of the same word even if it contains braces or metacharac?
ters. The value, if any, of the parameter is substituted. The
braces are required when parameter is followed by a letter,
digit, or underscore that is not to be interpreted as part of
its name, when the variable name contains a .. The braces are
also required when a variable is subscripted unless it is part
of an Arithmetic Expression or a Conditional Expression. If pa?
rameter is one or more digits then it is a positional parameter.
A positional parameter of more than one digit must be enclosed
in braces. If parameter is * or @, then all the positional pa?
rameters, starting with $1, are substituted (separated by a
field separator character). If an array vname with last sub?
script * @, or for indexed arrays of the form subl .. sub2. is
used, then the value for each of the elements between subl and
sub2 inclusive (or all elements for * and @) is substituted,
separated by the first character of the value of IFS.

${#parameter}
If parameter is * or @, the number of positional parameters is
substituted. Otherwise, the length of the value of the parame?
ter is substituted.

${#vname[*]}

${#vname[@]}
The number of elements in the array vname is substituted.

${@vname}
Expands to the type name (See Type Variables below) or at?
tributes of the variable referred to by vname.

${'vname}

Expands to the name of the variable referred to by vname. This

Page 13/97

will be vname except when vname is a name reference.
${lvname[subscript]}
Expands to name of the subscript unless subscript is *, @. or
of the form subl .. sub2. When subscript is *, the list of ar?
ray subscripts for vname is generated. For a variable that is
not an array, the value is O if the variable is set. Otherwise
it is null. When subscript is @, same as above, except that
when used in double quotes, each array subscript yields a sepa?
rate argument. When subscript is of the form subl .. sub2 it
expands to the list of subscripts between subl and sub2 inclu?
sive using the same quoting rules as @.
${!prefix@}
${!prefix*}

These both expand to the names of the variables whose names be?

gin with prefix. The expansions otherwise work like $@ and $*,
respectively (see under Quoting below).
${parameter:-word}
If parameter is set and is non-null then substitute its value;
otherwise substitute word.
${parameter:=word}
If parameter is not set or is null then set it to word; the
value of the parameter is then substituted. Positional parame?
ters may not be assigned to in this way.
${parameter:?word}
If parameter is set and is non-null then substitute its value;
otherwise, print word and exit from the shell (if not interac?
tive). If word is omitted then a standard message is printed.
${parameter:+word}
If parameter is set and is non-null then substitute word; other?
wise substitute nothing.
In the above, word is not evaluated unless it is to be used as the sub?
stituted string, so that, in the following example, pwd is executed

only if d is not set or is null:

Page 14/97

print ${d:-$(pwd)}

If the colon (:) is omitted from the above expressions, then the

shell only checks whether parameter is set or not.

${parameter:offset:length}

${parameter:offset}
Expands to the portion of the value of parameter starting at the
character (counting from 0) determined by expanding offset as an
arithmetic expression and consisting of the number of characters
determined by the arithmetic expression defined by length. In
the second form, the remainder of the value is used. If A nega?
tive offset counts backwards from the end of parameter. Note
that one or more blanks is required in front of a minus sign to
prevent the shell from interpreting the operator as :-. If pa?
rameter is * or @, or is an array name indexed by * or @, then
offset and length refer to the array index and number of ele?
ments respectively. A negative offset is taken relative to one
greater than the highest subscript for indexed arrays. The or?
der for associative arrays is unspecified.

${parameter#pattern}

${parameter##pattern}
If the shell pattern matches the beginning of the value of pa?
rameter, then the value of this expansion is the value of the
parameter with the matched portion deleted; otherwise the value
of this parameter is substituted. In the first form the small?
est matching pattern is deleted and in the second form the
largest matching pattern is deleted. When parameter is @, *, or
an array variable with subscript @ or *, the substring operation
is applied to each element in turn.

${parameterYpattern}

${parameter¥%Yopattern}
If the shell pattern matches the end of the value of parameter,
then the value of this expansion is the value of the parameter

with the matched part deleted; otherwise substitute the value of

Page 15/97

parameter. In the first form the smallest matching pattern is
deleted and in the second form the largest matching pattern is
deleted. When parameter is @, *, or an array variable with sub?
script @ or *, the substring operation is applied to each ele?
ment in turn.

${parameter/pattern/string}

${parameter//pattern/string}

${parameter/#pattern/string}

${parameter/%pattern/string}
Expands parameter and replaces the longest match of pattern with
the given string. Each occurrence of \n in string is replaced
by the portion of parameter that matches the n-th sub-pattern.
In the first form, only the first occurrence of pattern is re?
placed. In the second form, each match for pattern is replaced
by the given string. The third form restricts the pattern match
to the beginning of the string while the fourth form restricts
the pattern match to the end of the string. When string is
null, the pattern will be deleted and the /in front of string
may be omitted. When parameter is @, *, or an array variable
with subscript @ or *, the substitution operation is applied to
each elementin turn. In this case, the string portion of word
will be re-evaluated for each element.

The following parameters are automatically set by the shell:
The number of positional parameters in decimal.
- Options supplied to the shell on invocation or by the set

command.

? The decimal value returned by the last executed command.
$ The process id of this shell.

Initially, the value of _is an absolute pathname of the
shell or script being executed as passed in the environ?
ment. Subsequently it is assigned the last argument of
the previous command. This parameter is not set for com?

mands which are asynchronous. This parameter is also

Page 16/97

used to hold the name of the matching MAIL file when
checking for mail. While defining a compound variable or
atype, _isinitialized as a reference to the compound
variable or type. When a discipline function is invoked,
__is initialized as a reference to the variable associ?
ated with the call to this function. Finally when _is
used as the name of the first variable of a type defini?
tion, the new type is derived from the type of the first
variable. (See Type Variables below.)

I The process id or the pool name and job number of the
last background command invoked or the most recent job
put in the background with the bg built-in command.
Background jobs started in a named pool will be in the
form pool.number where pool is the pool name and number
is the job number within that pool.

.sh.command
When processing a DEBUG trap, this variable contains the
current command line that is about to run. Each argument
is shell-quoted as necessary so that the value is safe
for being evaluated by the shell.

.sh.edchar
This variable contains the value of the keyboard charac?
ter (or sequence of characters if the first character is
an ESC, ascii 033) that has been entered when processing
a KEYBD trap (see Key Bindings below). If the value is
changed as part of the trap action, then the new value
replaces the key (or key sequence) that caused the trap.

.sh.edcol
The character position of the cursor at the time of the
most recent KEYBD trap.

.sh.edmode
The value is set to ESC when processing a KEYBD trap

while in viinsert mode. (See Vi Editing Mode below.) Page 17/97

Otherwise, .sh.edmode is null when processing a KEYBD
trap.

.sh.edtext
The characters in the input buffer at the time of the
most recent KEYBD trap. The value is null when not pro?
cessing a KEYBD trap.

.sh.file
The pathname of the file that contains the current com?
mand.

.sh.fun
The name of the current function that is being executed.

.sh.level
Set to the current function depth. This can be changed
inside a DEBUG trap and will set the context to the spec?
ified level.

.sh.lineno
Set during a DEBUG trap to the line number for the caller
of each function.

.sh.match
An indexed array which stores the most recent match and
sub-pattern matches after conditional pattern matches
that match and after variables expansions using the oper?
ators #, %, or /. The 0-th element stores the complete
match and the i-th. element stores the i-th submatch.
The .sh.match variable becomes unset when the variable
that has expanded is assigned a new value.

.sh.math
Used for defining arithmetic functions (see Arithmetic
evaluation below) and stores the list of user defined
arithmetic functions.

.sh.name
Set to the name of the variable at the time that a disci?

pline function is invoked.

Page 18/97

.sh.subscript
Set to the name subscript of the variable at the time
that a discipline function is invoked.
.sh.subshell
The current depth for subshells and command substitution.
.sh.pid
Set to the process ID of the current shell. This is dis?
tinct from $$ as in forked subshells this is set to the
process ID of the subshell instead of the parent shell's
process ID. In virtual subshells .sh.pid retains its
previous value.
.sh.value
Set to the value of the variable at the time that the set
or append discipline function is invoked. When a user
defined arithmetic function is invoked, the value of
.sh.value is saved and .sh.value is set to long double
precision floating point. .sh.value is restored when the
function returns.
.sh.version
Set to a value that identifies the version of this shell.
KSH_VERSION
A name reference to .sh.version.
LINENO The current line number within the script or function be?
ing executed.
OLDPWD The previous working directory set by the cd command.
OPTARG The value of the last option argument processed by the
getopts built-in command.
OPTIND The index of the last option argument processed by the
getopts built-in command.
PPID The process id of the parent of the shell.
PWD The present working directory set by the cd command.
RANDOM Each time this variable is referenced, a random integer,

uniformly distributed between 0 and 32767, is generated.

Page 19/97

The sequence of random numbers can be initialized by as?
signing a numeric value to RANDOM.

REPLY This variable is set by the select statement and by the
read built-in command when no arguments are supplied.

SECONDS
Each time this variable is referenced, the number of sec?
onds since shell invocation is returned. If this vari?
able is assigned a value, then the value returned upon
reference will be the value that was assigned plus the
number of seconds since the assignment.

SHLVL An integer variable the is incremented each time the
shell is invoked and is exported. If SHLVL is not in the
environment when the shell is invoked, it is set to 1.

The following variables are used by the shell:

CDPATH The search path for the cd command.

COLUMNS
If this variable is set, the value is used to define the
width of the edit window for the shell edit modes and for
printing select lists.

EDITOR If the VISUAL variable is not set, the value of this
variable will be checked for the patterns as described
with VISUAL below and the corresponding editing option
(see Special Command set below) will be turned on.

ENV If this variable is set, then parameter expansion, com?
mand substitution, and arithmetic substitution are per?
formed on the value to generate the pathname of the
script that will be executed when the shell is invoked
interactively (see Invocation below). This file is typi?
cally used for alias and function definitions. The de?
fault value is $HOME/.kshrc. On systems that support a
system wide /etc/ksh.kshrc initialization file, if the
filename generated by the expansion of ENV begins with

/.l or .l./ the system wide initialization file will not

Page 20/97

be executed.
FCEDIT Obsolete name for the default editor name for the hist
command. FCEDIT is not used when HISTEDIT is set.
FIGNORE
A pattern that defines the set of filenames that will be
ignored when performing filename matching.
FPATH The search path for function definitions. The directo?
ries in this path are searched for a file with the same
name as the function or command when a function with the
-u attribute is referenced and when a command is not
found. If an executable file with the name of that com?
mand is found, then it is read and executed in the cur?
rent environment. Unlike PATH, the current directory
must be represented explicitly by . rather than by adja?
cent : characters or a beginning or ending :.
HISTCMD
Number of the current command in the history file.
HISTEDIT
Name for the default editor name for the hist command.
HISTFILE
If this variable is set when the shell is invoked, then
the value is the pathname of the file that will be used
to store the command history (see Command Re-entry be?
low).
HISTSIZE
If this variable is set when the shell is invoked, then
the number of previously entered commands that are acces?
sible by this shell will be greater than or equal to this
number. The default is 512.
HOME The default argument (home directory) for the cd command.
IFS Internal field separators, normally space, tab, and new-
line that are used to separate the results of command

substitution or parameter expansion and to separate Page 21/97

fields with the built-in command read. The first charac?
ter of the IFS variable is used to separate arguments for
the "$*" substitution (see Quoting below). Each single
occurrence of an IFS character in the string to be spilit,
that is not in the isspace character class, and any adja?
cent characters in IFS that are in the isspace character
class, delimit a field. One or more characters in IFS
that belong to the isspace character class, delimit a
field. In addition, if the same isspace character ap?
pears consecutively inside IFS, this character is treated
as if it were notin the isspace class, so that if IFS
consists of two tab characters, then two adjacent tab
characters delimit a null field.

JOBMAX This variable defines the maximum number running back?
ground jobs that can run at a time. When this limit is
reached, the shell will wait for a job to complete before
staring a new job.

LANG This variable determines the locale category for any cat?
egory not specifically selected with a variable starting
with LC_ or LANG.

LC_ALL This variable overrides the value of the LANG variable
and any other LC_ variable.

LC_COLLATE
This variable determines the locale category for charac?
ter collation information.

LC_CTYPE
This variable determines the locale category for charac?
ter handling functions. It determines the character
classes for pattern matching (see File Name Generation
below).

LC_NUMERIC
This variable determines the locale category for the dec?

imal point character.

Page 22/97

LINES |If this variable is set, the value is used to determine
the column length for printing select lists. Select
lists will print vertically until about two-thirds of
LINES lines are filled.

MAIL If this variable is set to the name of a mail file and
the MAILPATH variable is not set, then the shell informs
the user of arrival of mail in the specified file.

MAILCHECK
This variable specifies how often (in seconds) the shell
will check for changes in the modification time of any of
the files specified by the MAILPATH or MAIL variables.
The default value is 600 seconds. When the time has
elapsed the shell will check before issuing the next
prompt.

MAILPATH
A colon (:) separated list of file names. If this
variable is set, then the shell informs the user of any
modifications to the specified files that have occurred
within the last MAILCHECK seconds. Each file name can be
followed by a ? and a message that will be printed. The
message will undergo parameter expansion, command substi?
tution, and arithmetic substitution with the variable $_
defined as the name of the file that has changed. The
default message is you have mailin $_.

PATH The search path for commands (see Execution below). The
user may not change PATH if executing under rksh (except
in .profile).

PS1 Everytime a new command line is started on an interac?
tive shell, the value of this variable is expanded to re?
solve backslash escaping, parameter expansion, command
substitution, and arithmetic substitution. The result
defines the primary prompt string for that command line.

The default is ©$". The character! in the primary Page 23/97

prompt string is replaced by the command number (see Com?
mand Re-entry below). Two successive occurrences of !
will produce a single ! when the prompt string is

printed. Note that any terminal escape sequences used in
the PS1 prompt thus need every instance of ! in them to

be changed to !!.

PS2 Secondary prompt string, by default > ".

PS3 Selection prompt string used within a select loop, by de?
fault “#? "

PS4 The value of this variable is expanded for parameter
evaluation, command substitution, and arithmetic substi?
tution and precedes each line of an execution trace. By
default, PS4 is “+". In addition when PS4 is unset,
the execution trace prompt is also "+ ".

SHELL The pathname of the shell is kept in the environment. At
invocation, if the basename of this variable is rsh,
rksh, or krsh, then the shell becomes restricted.

TIMEFORMAT
The value of this parameter is used as a format string
specifying how the timing information for pipelines pre?
fixed with the time reserved word should be displayed.
The % character introduces a format sequence that is ex?
panded to a time value or other information. The format
sequences and their meanings are as follows.

%% A literal %.

%[p][lJR The elapsed time in seconds.

%[p][lJU The number of CPU seconds spent in user mode.
%[p][l]S The number of CPU seconds spent in system mode.
%P The CPU percentage, computed as (U + S) / R.

The brackets denote optional portions. The optional p is

a digit specifying the precision, the number of frac?

tional digits after a decimal point. A value of O causes

no decimal point or fraction to be output. At most three Page 24/97

places after the decimal point can be displayed; values
of p greater than 3 are treated as 3. If p is not speci?
fied, the value 3 is used.

The optional | specifies a longer format, including hours
if greater than zero, minutes, and seconds of the form
HHhMMmMSS.FFs. The value of p determines whether or not
the fraction is included.

All other characters are output without change and a
trailing newline is added. If unset, the default value,
$'\nreal\t%2IR\nusent%2lU\nsys\t%2IS', is used. If the
value is null, no timing information is displayed.

TMOUT Terminal read timeout. If setto a value greater than
zero, the read built-in command and the select compound
command time out after TMOUT seconds when input is from a
terminal. An interactive shell will issue a warning and
allow for an extra 60 second timeout grace period before
terminating if a line is not entered within the pre?
scribed number of seconds while reading from a terminal.
(Note that the shell can be compiled with a maximum bound
for this value which cannot be exceeded.)

VISUAL If the value of this variable matches the pattern
[VV][li], then the vi option (see Special Command set
below) is turned on. If the value matches the pattern
gmacs , the gmacs option is turned on. If the value
matches the pattern *macs*, then the emacs option will be
turned on. The value of VISUAL overrides the value of
EDITOR.

The shell gives default values to PATH, PS1, PS2, PS3, PS4, MAILCHECK,
FCEDIT, TMOUT and IFS, while HOME, SHELL, ENV, and MAIL are not set at
all by the shell (although HOME is set by login(1)). On some systems
MAIL and SHELL are also set by login(1).

Field Splitting.

After parameter expansion and command substitution, the results of sub? Page 25/97

stitutions are scanned for the field separator characters (those found
in IFS) and split into distinct fields where such characters are found.

Explicit null fields ("™ or ??) are retained. Implicit null fields
(those resulting from parameters that have no values or command substi?
tutions with no output) are removed.

Brace Expansion.
If the braceexpand (-B) option is set then each of the fields resulting
from IFS are checked to see if they contain one or more of the brace
patterns {**}, {I1..12}, {n1..n2}, {n1..n2% fmt}, {n1..n2 ..n3},
or {n1..n2 ..n3%fmt} , where * represents any character, 11,12 are let?
ters and nl1,n2,n3 are signed numbers and fmt is a format specified as
used by printf. In each case, fields are created by prepending the
characters before the { and appending the characters after the } to
each of the strings generated by the characters between the { and }.
The resulting fields are checked to see if they have any brace pat?
terns.
In the first form, a field is created for each string between { and ,,
between , and ,, and between , and }. The string represented by * can
contain embedded matching { and } without quoting. Otherwise, each {
and } with * must be quoted.
In the seconds form, I1 and I2 must both be either upper case or both
be lower case characters in the C locale. In this case a field is cre?
ated for each character from I1 thru 12.
In the remaining forms, a field is created for each number starting at
nl and continuing until it reaches n2 incrementing n1 by n3. The cases
where n3 is not specified behave as if n3 where 1 if n1<=n2 and -1 oth?
erwise. If forms which specify %fmt any format flags, widths and pre?
cisions can be specified and fmt can end in any of the specifiers
cdiouxX. For example, {a,z}{1..5..3%02dHb..c}x expands to the 8
fields, a01lbx, aOlcx, a04bx, a04cx, z01lbx, z01lcx, z04bx and z04cx.

File Name Generation.
Following splitting, each field is scanned for the characters *, ?, (|

and [unless the -f option has been set. If one of these characters Page 26/97

appears, then the word is regarded as a pattern. Each file name compo?
nent that contains any pattern character is replaced with a lexico?
graphically sorted set of names that matches the pattern from that di?
rectory. If no file name is found that matches the pattern, then that
component of the filename is left unchanged unless the pattern is pre?
fixed with ?(N) in which case it is removed as described below. The
special traversal names . and .. are never matched. If FIGNORE is
set, then each file name component that matches the pattern defined by
the value of FIGNORE is ignored when generating the matching filenames.
If FIGNORE is not set, the character . at the start of each file name
component will be ignored unless the first character of the pattern
corresponding to this component is the character . itself. Note, that

for other uses of pattern matching the / and . are not treated spe?
cially.

* Matches any string, including the null string. When used
for filename expansion, if the globstar option is on, an
isolated pattern of two adjacent *'s will match all files
and zero or more directories and subdirectories. If fol?
lowed by a / then only directories and subdirectories
will match.

? Matches any single character.

[...] Matches any one of the enclosed characters. A pair of
characters separated by - matches any character lexically
between the pair, inclusive. If the first character fol?
lowing the opening [isa! or ~ then any character not
enclosed is matched. A - can be included in the charac?
ter set by putting it as the first or last character.

Within [and], character classes can be specified with
the syntax [:class:] where class is one of the following
classes defined in the ANSI-C standard: (Note that word
is equivalent to alnum plus the character _.)

alnum alpha blank cntrl digit graph lower print punct

space upper word xdigit

Page 27/97

Within [and], an equivalence class can be specified
with the syntax [=c=] which matches all characters with
the same primary collation weight (as defined by the cur?
rent locale) as the character c. Within [and], [.sym?
bol.] matches the collating symbol symbol.

A pattern-list is a list of one or more patterns separated from each

other with a & or |. A & signifies that all patterns must be matched

whereas | requires that only one pattern be matched. Composite pat?

terns can be formed with one or more of the following sub-patterns:

?(pattern-list)

Optionally matches any one of the given patterns.
*(pattern-list)

Matches zero or more occurrences of the given patterns.
+(pattern-list)

Matches one or more occurrences of the given patterns.
{n}(pattern-list)

Matches n occurrences of the given patterns.
{m,n}(pattern-list)

Matches from m to n occurrences of the given patterns.

If m is omitted, O will be used. If n is omitted at

least m occurrences will be matched.
@ (pattern-list)

Matches exactly one of the given patterns.
I(pattern-list)

Matches anything except one of the given patterns.

By default, each pattern, or sub-pattern will match the longest string

possible consistent with generating the longest overall match. If more
than one match is possible, the one starting closest to the beginning

of the string will be chosen. However, for each of the above compound

patterns a - can be inserted in front of the (to cause the shortest

match to the specified pattern-list to be used.

When pattern-list is contained within parentheses, the backslash char?

acter \is treated specially even when inside a character class. All

Page 28/97

ANSI-C character escapes are recognized and match the specified charac?
ter. In addition the following escape sequences are recognized:

\d Matches any character in the digit class.

\D Matches any character not in the digit class.

\s Matches any character in the space class.

\S Matches any character not in the space class.

\w Matches any character in the word class.

\W Matches any character not in the word class.
A pattern of the form %(pattern-pair(s)) is a sub-pattern that can be
used to match nested character expressions. Each pattern-pair is a two
character sequence which cannot contain & or |. The first pattern-pair
specifies the starting and ending characters for the match. Each sub?
sequent pattern-pair represents the beginning and ending characters of
a nested group that will be skipped over when counting starting and
ending character matches. The behavior is unspecified when the first
character of a pattern-pair is alphanumeric except for the following:

D Causes the ending character to terminate the search for
this pattern without finding a match.

E Causes the ending character to be interpreted as an es?
cape character.

L Causes the ending character to be interpreted as a quote
character causing all characters to be ignored when look?
ing for a match.

Q Causes the ending character to be interpreted as a quote
character causing all characters other than any escape
character to be ignored when looking for a match.

Thus, %({}Q"E\), matches characters starting at { until the matching }
is found not counting any { or } that is inside a double quoted string

or preceded by the escape character \. Without the {} this pattern
matches any C language string.

Each sub-pattern in a composite pattern is numbered, starting at 1, by
the location of the (within the pattern. The sequence \n, where n is

a single digit and \n comes after the n-th. sub-pattern, matches the

Page 29/97

same string as the sub-pattern itself.

Finally a pattern can contain sub-patterns of the form ?(options:pat?

tern-list), where either options or :pattern-list can be omitted. Un?

like the other compound patterns, these sub-patterns are not counted in

the numbered sub-patterns. :pattern-list must be omitted for options

F, G, N, and V below. If options is present, it can consist of one or

more of the following:

+

Enable the following options. This is the default.

Disable the following options.

The remainder of the pattern uses extended regular ex?
pression syntax like the egrep(1) command.

The remainder of the pattern uses fgrep(1l) expression
syntax.

The remainder of the pattern uses basic regular expres?
sion syntax like the grep(1) command.

The remainder of the pattern uses shell pattern syntax.
This is the default.

This is ignored. However, when it is the first letter
and is used with file name generation, and no matches oc?
cur, the file pattern expands to the empty string.

The remainder of the pattern uses augmented regular ex?
pression syntax like the xgrep(1) command.

The remainder of the pattern uses perl(1) regular expres?
sion syntax. Not all perl regular expression syntax is
currently implemented.

The remainder of the pattern uses System V regular ex?
pression syntax.

Always treat the match as case-insensitive, regardless of
the globcasedetect shell option.

File the longest match (greedy). This is the default.

Left anchor the pattern. This is the default for K style
patterns.

Right anchor the pattern. This is the default for K

Page 30/97

style patterns.
If both options and :pattern-list are specified, then the options apply
only to pattern-list. Otherwise, these options remain in effect until
they are disabled by a subsequent ?(...) or at the end of the sub-pat?
tern containing ?(...).
Quoting.
Each of the metacharacters listed earlier (see Definitions above) has a
special meaning to the shell and causes termination of a word unless
qguoted. A character may be quoted (i.e., made to stand for itself) by
preceding it with a\. The pair \new-line is removed. All characters
enclosed between a pair of single quote marks (??) that is not preceded
by a $ are quoted. A single quote cannot appear within the single
guotes. A single quoted string preceded by an unquoted $ is processed
as an ANSI-C string except for the following:
\O Causes the remainder of the string to be ignored.
\E Equivalent to the escape character (ascii 033),
\e Equivalent to the escape character (ascii 033),
\cx Expands to the character control-x.
\C[.name.]
Expands to the collating element name.

Inside double quote marks ("), parameter and command substitution oc?
cur and \ quotes the characters)\, , ", and $. A $in front of a dou?

ble quoted string will be ignored in the "C" or "POSIX" locale, and may
cause the string to be replaced by a locale specific string otherwise.

The meaning of $* and $@ is identical when not quoted or when used as a
variable assignment value or as a file name. However, when used as a

command argument, "$*" is equivalent to "$1d$2d...", where d is the
first character of the IFS variable, whereas "$@" is equivalent to "$1"
"$2" Inside grave quote marks (), \ quotes the characters \, °,

and $. If the grave quotes occur within double quotes, then \ also
guotes the character ".

The special meaning of reserved words or aliases can be removed by

quoting any character of the reserved word. The recognition of func? Page 31/97

tion names or built-in command names listed below cannot be altered by
quoting them.

Arithmetic Evaluation.
The shell performs arithmetic evaluation for arithmetic substitution,
to evaluate an arithmetic command, to evaluate an indexed array sub?
script, and to evaluate arguments to the built-in commands shift and
let. Evaluations are performed using double precision floating point
arithmetic or long double precision floating point for systems that
provide this data type. Floating point constants follow the ANSI-C
programming language floating point conventions. The floating point
constants Nan and Inf can be used to represent "not a number" and in?
finity respectively. Integer constants follow the ANSI-C programming
language integer constant conventions although only single byte charac?
ter constants are recognized and character casts are not recognized.
In addition constants can be of the form [base#]n where base is a deci?
mal number between two and sixty-four representing the arithmetic base
and n is a number in that base. The digits above 9 are represented by
the lower case letters, the upper case letters, @, and _ respectively.
For bases less than or equal to 36, upper and lower case characters can
be used interchangeably.
An arithmetic expression uses the same syntax, precedence, and associa?
tivity of expression as the C language. All the C language operators
that apply to floating point quantities can be used. In addition, the
operator ** can be used for exponentiation. It has higher precedence
than multiplication and is left associative. In addition, when the
value of an arithmetic variable or sub-expression can be represented as
a long integer, all C language integer arithmetic operations can be
performed. Variables can be referenced by name within an arithmetic
expression without using the parameter expansion syntax. When a vari?
able is referenced, its value is evaluated as an arithmetic expression.
Any of the following math library functions that are in the C math 1i?
brary can be used within an arithmetic expression:

abs acos acosh asin asinh atan atan2 atanh cbrt ceil copysign cos cosh Page 32/97

erf erfc exp expl0 exp2 expm1 fabs fdim finite float floor fma fmax
fmin fmod fpclass fpclassify hypot ilogb int isfinite isgreater is?
greaterequal isinf isinfinite isless islessequal islessgreater isnan
isnormal issubnormal isunordered iszero jO j1 jn I[dexp Igamma log log10
loglp log2 logb nearbyint nextafter nexttoward pow remainder rint round
scalb scalbn signbit sin sinh sgrt tan tanh tgamma trunc y0 y1 yn
In addition, arithmetic functions can be defined as shell functions
with a variant of the function name syntax,
function .sh.math.name ident ... { list ;}
where name is the function name used in the arithmetic expres?
sion and each identifier, ident is a name reference to the long
double precision floating point argument. The value of
.sh.value when the function returns is the value of this func?
tion. User defined functions can take up to 3 arguments and
override C math library functions.
An internal representation of a variable as a double precision floating
point can be specified with the -E [n], -F [n], or -X [n] option of the
typeset special built-in command. The -E option causes the expansion
of the value to be represented using scientific notation when it is ex?
panded. The optional option argument n defines the number of signifi?
cant figures. The -F option causes the expansion to be represented as
a floating decimal number when it is expanded. The -X option causes
the expansion to be represented using the %a format defined by ISO
C-99. The optional option argument n defines the number of places af?
ter the decimal (or radix) point in this case.
An internal integer representation of a variable can be specified with
the -i [n] option of the typeset special built-in command. The op?
tional option argument n specifies an arithmetic base to be used when
expanding the variable. If you do not specify an arithmetic base, base
10 will be used.
Arithmetic evaluation is performed on the value of each assignment to a
variable with the -E, -F, -X, or -i attribute. Assigning a floating

point number to a variable whose type is an integer causes the frac?

Page 33/97

tional part to be truncated.
Prompting.
When used interactively, the shell prompts with the value of PS1 after
expanding it for parameter expansion, command substitution, and arith?
metic substitution, before reading a command. In addition, each single
I in the prompt is replaced by the command number. A !l is required
to place ! in the prompt. If at any time a new-line is typed and fur?
ther input is needed to complete a command, then the secondary prompt
(i.e., the value of PS2) is issued.
Conditional Expressions.
A conditional expression is used with the [[compound command to test
attributes of files and to compare strings. Field splitting and file
name generation are not performed on the words between [[and]]. Each
expression can be constructed from one or more of the following unary
or binary expressions:
string True, if string is not null.
-a file
Same as -e below. This is obsolete.
-b file
True, if file exists and is a block special file.
-c file
True, if file exists and is a character special file.
-d file
True, if file exists and is a directory.
-e file
True, if file exists.
-f file
True, if file exists and is an ordinary file.
-g file
True, if file exists and it has its setgid bit set.
-k file
True, if file exists and it has its sticky bit set.

-n string Page 34/97

True, if length of string is non-zero.
-0 ?option

True, if option named option is a valid option name.
-0 option

True, if option named option is on.
-p file

True, if file exists and is a fifo special file or a pipe.
- file

True, if file exists and is readable by current process.
-s file

True, if file exists and has size greater than zero.

-t fildes

True, if file descriptor number fildes is open and associated

with a terminal device.
-u file
True, if file exists and it has its setuid bit set.
-V name
True, if variable name is a valid variable name and is set.
-w file
True, if file exists and is writable by current process.
-x file
True, if file exists and is executable by current process. |If
file exists and is a directory, then true if the current process
has permission to search in the directory.
-z string
True, if length of string is zero.
-L file
True, if file exists and is a symbolic link.
-h file
True, if file exists and is a symbolic link.
-N file
True, if file exists and the modification time is greater than

the last access time.

Page 35/97

-O file
True, if file exists and is owned by the effective user id of
this process.

-G file
True, if file exists and its group matches the effective group
id of this process.

-R name
True if variable name is a name reference.

-Sfile
True, if file exists and is a socket.

filel -nt file2
True, if filel exists and file2 does not, or filel is newer than
file2.

filel -ot file2
True, if file2 exists and filel does not, or filel is older than
file2.

filel -ef file2
True, if filel and file2 exist and refer to the same file.

string == pattern
True, if string matches pattern. Any part of pattern can be
guoted to cause it to be matched as a string. With a successful
match to a pattern, the .sh.match array variable will contain
the match and sub-pattern matches.

string = pattern
Same as == above, but is obsolete.

string != pattern
True, if string does not match pattern. When the string matches
the pattern the .sh.match array variable will contain the match
and sub-pattern matches.

string =? ere
True if string matches the pattern ?(E)ere where ere is an ex?
tended regular expression.

stringl < string2 Page 36/97

True, if stringl comes before string2 based on ASCII value of
their characters.
stringl > string2
True, if stringl comes after string2 based on ASCII value of
their characters.
The following obsolete arithmetic comparisons are also permitted:
expl -eq exp2
True, if expl is equal to exp2.
expl -ne exp2
True, if expl is not equal to exp2.
expl -It exp2
True, if expl is less than exp2.
expl -gt exp2
True, if expl is greater than exp2.
expl -le exp2
True, if expl is less than or equal to exp2.
expl -ge exp2
True, if expl is greater than or equal to exp2.
In each of the above expressions, if file is of the form /dev/fd/n,
where n is an integer, then the test is applied to the open file whose
descriptor number is n.
A compound expression can be constructed from these primitives by using
any of the following, listed in decreasing order of precedence.
(expression)
True, if expression is true. Used to group expressions.
I expression
True if expression is false.
expressionl && expression2
True, if expressionl and expression2 are both true.
expressionl || expression2
True, if either expressionl or expression?2 is true.
Input/Output.

Before a command is executed, its input and output may be redirected Page 37/97

using a special notation interpreted by the shell. The following may
appear anywhere in a simple-command or may precede or follow a command
and are not passed on to the invoked command. Command substitution,
parameter expansion, and arithmetic substitution occur before word or
digit is used except as noted below. File name generation occurs only

if the shell is interactive and the pattern matches a single file.

Field splitting is not performed.

In each of the following redirections, if file is of the form
/dev/sctp/host/port, /dev/tcp/host/port, or /dev/udp/host/port, where

host is a hostname or host address, and port is a service given by name
or an integer port number, then the redirection attempts to make a tcp,
sctp or udp connection to the corresponding socket.

No intervening space is allowed between the characters of redirection

operators.
<word Use file word as standard input (file descriptor 0).
>word Use file word as standard output (file descriptor 1). If

the file does not exist then it is created. If the file
exists, and the noclobber option is on, this causes an
error; otherwise, it is truncated to zero length.

>|word Same as >, except that it overrides the noclobber option.

>:word Write output to atemporary file. If the command com?
pletes successfully rename it to word, otherwise, delete
the temporary file. >;word cannot be used with the exec
and redirect built-ins.

>>word Use file word as standard output. If the file exists,
then output is appended to it (by first seeking to the
end-of-file); otherwise, the file is created.

<>word Open file word for reading and writing as standard out?
put. If the posix option is active, it defaults to stan?
dard input instead.

<>;word The same as <>word except that if the command completes
successfully, word is truncated to the offset at command

completion. <>;word cannot be used with the exec and re?

Page 38/97

direct built-ins.

<<[-]Jword The shell inputis read up to a line that is the same as
word after any quoting has been removed, or to an end-of-
file. No parameter substitution, command substitution,
arithmetic substitution or file name generation is per?
formed on word. The resulting document, called a here-
document, becomes the standard input. If any character
of word is quoted, then no interpretation is placed upon
the characters of the document; otherwise, parameter ex?
pansion, command substitution, and arithmetic substitu?
tion occur, \new-line is ignored, and \ must be used to
quote the characters \, $, *. If - is appended to <<,
then all leading tabs are stripped from word and from the
document. If # is appended to <<, then leading spaces
and tabs will be stripped off the first line of the docu?
ment and up to an equivalent indentation will be stripped
from the remaining lines and from word. A tab stop is
assumed to occur at every 8 columns for the purposes of
determining the indentation.

<<<word A short form of here document in which word becomes the
contents of the here-document after any parameter expan?
sion, command substitution, and arithmetic substitution
occur.

<&digit The standard input is duplicated from file descriptor
digit (see dup(2)).

>&digit The standard output is duplicated from file descriptor
digit.

<&digit- The file descriptor given by digit is moved to standard
input.

>&digit- The file descriptor given by digit is moved to standard
output.

<&- The standard input is closed.

>&- The standard output is closed. Page 39/97

<&p The input from the co-process is moved to standard input.

>&p The output to the co-process is moved to standard output.

<#((expr)) Evaluate arithmetic expression expr and position file de?
scriptor 0 to the resulting value bytes from the start of
the file. The variables CUR and EOF evaluate to the cur?
rent offset and end-of-file offset respectively when
evaluating expr.

>#((offset)) The same as <# except applies to file descriptor 1.

<#pattern Seeks forward to the beginning of the next line contain?
ing pattern.

<##pattern The same as <# except that the portion of the file that
is skipped is copied to standard output.

If one of the above is preceded by a digit, with no intervening space,

then the file descriptor number referred to is that specified by the

digit (instead of the default 0 or 1). If one of the above, other than

>&- and the ># and <# forms, is preceded by {varname} with no interven?

ing space, then a file descriptor number > 9 will be selected by the
shell and stored in the variable varname, so it can be read from or

written to with redirections like <& $varname or >& $varname. If >&-

or the any of the ># and <# forms is preceded by {varname} the value of

varname defines the file descriptor to close or position. For example:
e 2>&1
means file descriptor 2 is to be opened for writing as a duplicate of
file descriptor 1 and
exec {n}<file
means open file named file for reading and store the file descriptor
number in variable n.
A special shorthand redirection operator &>word is available; it is
equivalent to >word 2>&1. It cannot be preceded by any digit or vari?
able name. This shorthand is disabled if the posix shell option is ac?
tive.
The order in which redirections are specified is significant. The

shell evaluates each redirection in terms of the (file descriptor,

Page 40/97

file) association at the time of evaluation. For example:

... 1>fname 2>&1
first associates file descriptor 1 with file fname. It then associates
file descriptor 2 with the file associated with file descriptor 1 (i.e.
fname). If the order of redirections were reversed, file descriptor 2
would be associated with the terminal (assuming file descriptor 1 had
been) and then file descriptor 1 would be associated with file fname.
If a command is followed by & and job control is not active, then the
default standard input for the command is the empty file /dev/null.
Otherwise, the environment for the execution of a command contains the
file descriptors of the invoking shell as modified by input/output
specifications.

Environment.

The environment (see environ(7)) is a list of name-value pairs that is
passed to an executed program inthe same way as a normal argument
list. The names must be identifiers and the values are character
strings. The shell interacts with the environment in several ways. On
invocation, the shell scans the environment and creates a variable for
each name found, giving it the corresponding value and attributes and
marking it export. Executed commands inherit the environment. If the
user modifies the values of these variables or creates new ones, using
the export or typeset -x commands, they become part of the environment.
The environment seen by any executed command is thus composed of any
name-value pairs originally inherited by the shell, whose values may be
modified by the current shell, plus any additions which must be noted
in export or typeset -x commands.
The environment for any simple-command or function may be augmented by
prefixing it with one or more variable assignments. A variable assign?
ment argument is a word of the form identifier=value. Thus:

TERM=450 cmd args and

(export TERM; TERM=450; cmd args)
are equivalent (as far as the above execution of cmd is concerned ex?

cept for special built-in commands listed below - those that are marked Page 41/97

with ?).
If the obsolete -k option is set, all variable assignment arguments are
placed in the environment, even if they occur after the command name.
The following first prints a=b ¢ and then c:

echoa=bc

set -k

echoa=bc
This feature is intended for use with scripts written for early ver?
sions of the shell and its use in new scripts is strongly discouraged.
It is likely to disappear someday.

Functions.

For historical reasons, there are two ways to define functions, the
name() syntax and the function name syntax, described in the Commands
section above. Shell functions are read in and stored internally.
Alias names are resolved when the function is read. Functions are exe?
cuted like commands with the arguments passed as positional parameters.
(See Execution below.)
Functions defined by the function name syntax and called by name exe?
cute in the same process as the caller and share all files and present
working directory with the caller. Traps caught by the caller are re?
set to their default action inside the function. A trap condition that
is not caught or ignored by the function causes the function to termi?
nate and the condition to be passed on to the caller. Atrap on EXIT
set inside a function is executed in the environment of the caller af?
ter the function completes. Ordinarily, variables are shared between
the calling program and the function. However, the typeset special
built-in command used within a function defines local variables whose
scope includes the current function. They can be passed to functions
that they call in the variable assignment list that precedes the call
or as arguments passed as name references. Errors within functions re?
turn control to the caller.
Functions defined with the name() syntax and functions defined with the

function name syntax that are invoked with the . special built-in are Page 42/97

executed in the caller's environment and share all variables and traps
with the caller. Errors within these function executions cause the
script that contains them to abort.
The special built-in command return is used to return from function
calls.
Function names can be listed with the -f or +f option of the typeset
special built-in command. The text of functions, when available, will
also be listed with -f. Functions can be undefined with the -f option
of the unset special built-in command.
Ordinarily, functions are unset when the shell executes a shell script.
Functions that need to be defined across separate invocations of the
shell should be placed in a directory and the FPATH variable should
contain the name of this directory. They may also be specified in the
ENV file.

Discipline Functions.
Each variable can have zero or more discipline functions associated
with it. The shell initially understands the discipline names get,
set, append, and unset but can be added when defining new types. On
most systems others can be added at run time via the C programming in?
terface extension provided by the builtin built-in utility. If the get
discipline is defined for a variable, it is invoked whenever the given
variable is referenced. If the variable .sh.value is assigned a value
inside the discipline function, the referenced variable will evaluate
to this value instead. If the set discipline is defined for a vari?
able, it is invoked whenever the given variable is assigned a value.
If the append discipline is defined for a variable, it is invoked when?
ever a value is appended to the given variable. The variable .sh.value
is given the value of the variable before invoking the discipline, and
the variable will be assigned the value of .sh.value after the disci?
pline completes. If .sh.value is unset inside the discipline, then
that value is unchanged. If the unset discipline is defined for a
variable, it is invoked whenever the given variable is unset. The

variable will not be unset unless it is unset explicitly from within Page 43/97

this discipline function.
The variable .sh.name contains the name of the variable for which the
discipline function is called, .sh.subscript is the subscript of the
variable, and .sh.value will contain the value being assigned inside
the set discipline function. The variable _is a reference to the
variable including the subscript if any. For the set discipline,
changing .sh.value will change the value that gets assigned. Finally,
the expansion ${var.name}, when name is the name of a discipline, and
there is no variable of this name, is equivalent to the command substi?
tution ${ var.name;}.

Name Spaces.
Commands and functions that are executed as part of the list of a name?
space command that modify variables or create new ones, create a new
variable whose name is the name of the name space as given by identi?
fier preceded by .. When a variable whose name is name is referenced,
it is first searched for using .identifier.name. Similarly, a function
defined by a command in the namespace list is created using the name
space name preceded by a ..
When the list of a namespace command contains a namespace command, the
names of variables and functions that are created consist of the vari?
able or function name preceded by the list of identifiers each preceded
by ..
Outside of a name space, a variable or function created inside a name
space can be referenced by preceding it with the name space name.
By default, variables staring with .sh are in the sh name space.

Type Variables.
Typed variables provide a way to create data structure and objects. A
type can be defined either by a shared library, by the enum built-in
command described below, or by using the new -T option of the typeset
built-in command. With the -T option of typeset, the type name, speci?
fied as an option argument to -T, is set with a compound variable as?
signment that defines the type. Function definitions can appear inside

the compound variable assignment and these become discipline functions Page 44/97

for this type and can be invoked or redefined by each instance of the
type. The function name create is treated specially. It is invoked

for each instance of the type that is created but is not inherited and
cannot be redefined for each instance.

When a type is defined a special built-in command of that name is
added. These built-ins are declaration commands and follow the same
expansion rules as the built-in commands described below that are
marked with a ? symbol. These commands can subsequently be used inside
further type definitions. The man page for these commands can be gen?
erated by using the --man option or any of the other -- options de?
scribed with getopts. The -r, -a, -A, -h, and -S options of typeset

are permitted with each of these new built-ins.

An instance of a type is created by invoking the type name followed by
one or more instance names. Each instance of the type is initialized
with a copy of the sub-variables except for sub-variables that are de?
fined with the -S option. Variables defined with the -S are shared by

all instances of the type. Each instance can change the value of any
sub-variable and can also define new discipline functions of the same
names as those defined by the type definition as well as any standard
discipline names. No additional sub-variables can be defined for any
instance.

When defining a type, if the value of a sub-variable is not set and the

-r attribute is specified, it causes the sub-variable to be a required
sub-variable. Whenever an instance of a type is created, all required
sub-variables must be specified. These sub-variables become readonly
in each instance.

When unset is invoked on a sub-variable within a type, and the -r at?
tribute has not been specified for this field, the value is reset to

the default value associative with the type. Invoking unset on a type
instance not contained within another type deletes all sub-variables
and the variable itself.

A type definition can be derived from another type definition by defin?

ing the first sub-variable name as _ and defining its type as the base

Page 45/97

type. Any remaining definitions will be additions and modifications
that apply to the new type. If the new type name is the same as that
of the base type, the type will be replaced and the original type will
no longer be accessible.
The typeset command with the -T and no option argument or operands will
write all the type definitions to standard output in a form that can be
read in to create all they types.

Jobs.
If the monitor option of the set command is turned on, an interactive
shell associates a job with each pipeline. It keeps a table of current
jobs, printed by the jobs command, and assigns them small integer num?
bers. When a job is started asynchronously with &, the shell prints a
line which looks like:

[1] 1234

indicating that the job which was started asynchronously was job number
1 and had one (top-level) process, whose process id was 1234.
This paragraph and the next require features that are not in all ver?
sions of UNIX and may not apply. If you are running a job and wish to
do something else you may hit the key ~Z (control-Z) which sends a STOP
signal to the current job. The shell will then normally indicate that
the job has been "Stopped', and print another prompt. You can then ma?
nipulate the state of this job, putting it in the background with the
bg command, or run some other commands and then eventually bring the
job back into the foreground with the foreground command fg. A ~Z
takes effect immediately and is like an interrupt in that pending out?
put and unread input are discarded when it is typed.
A job being run in the background will stop if it tries to read from
the terminal. Background jobs are normally allowed to produce output,
but this can be disabled by giving the command stty tostop. If you set
this tty option, then background jobs will stop when they try to pro?
duce output like they do when they try to read input.

A job pool is a collection of jobs started with list & associated with

a name. Page 46/97

There are several ways to refer to jobs in the shell. A job can be re?
ferred to by the process id of any process of the job or by one of the
following:

%number
The job with the given number.

pool All the jobs in the job pool named by pool.

pool.number
The job number number in the job pool named by pool.

%string
Any job whose command line begins with string.

%?string
Any job whose command line contains string.

%% Current job.

%+ Equivalent to %%.

%- Previous job. In addition, unless noted otherwise, wherever a
job can be specified, the name of a background job pool can be
used to represent all the jobs in that pool.

The shell learns immediately whenever a process changes state. It nor?

mally informs you whenever a job becomes blocked so that no further

progress is possible, but only just before it prints a prompt. This is

done so that it does not otherwise disturb your work. The notify op?

tion of the set command causes the shell to print these job change mes?

sages as soon as they occur.

When the monitor option is on, each background job that completes trig?

gers any trap set for CHLD.

When you try to leave the shell while jobs are running or stopped, you

will be warned that “You have stopped(running) jobs." You may use the

jobs command to see what they are. If you immediately try to exit
again, the shell will not warn you a second time, and the stopped jobs
will be terminated. When a login shell receives a HUP signal, it sends

a HUP signal to each job that has not been disowned with the disown

built-in command described below.

Signals. Page 47/97

The INT and QUIT signals for an invoked command are ignored if the com?
mand is followed by & and the monitor option is not active. Otherwise,
signals have the values inherited by the shell from its parent (but see
also the trap built-in command below).

Execution.
Each time a command is read, the above substitutions are carried out.
If the command name matches one of the Special Built-in Commands listed
below, it is executed within the current shell process. Next, the com?
mand name is checked to see if it matches a user defined function. If
it does, the positional parameters are saved and then reset to the ar?
guments of the function call. A function is also executed in the cur?
rent shell process. When the function completes or issues a return,
the positional parameter list is restored. For functions defined with
the function name syntax, any trap set on EXIT within the function is
executed. The exit value of a function is the value of the last com?
mand executed. If a command name is not a special built-in command or
a user defined function, but it is one of the built-in commands listed
below, it is executed in the current shell process.
The shell variables PATH followed by the variable FPATH defines the
list of directories to search for the command name. Alternative direc?
tory names are separated by a colon (). The default path is the value
that was output by getconf PATH at the time ksh was compiled. The cur?
rent directory can be specified by two or more adjacent colons, or by a
colon at the beginning or end of the path list. If the command name
contains a /, then the search path is not used. Otherwise, each direc?
tory in the list of directories defined by PATH and FPATH is checked in
order. If the directory being searched is contained in FPATH and con?
tains a file whose name matches the command being searched, then this
file is loaded into the current shell environment as if it were the ar?
gument to the . command except that only preset aliases are expanded,
and a function of the given name is executed as described above.
If this directory is not in FPATH the shell first determines whether

there is a built-in version of a command corresponding to a given path? Page 48/97

name and if so it is invoked in the current process. If no built-in is
found, the shell checks for a file named .paths in this directory. If
found and there is a line of the form FPATH=path where path names an
existing directory then that directory is searched immediately after
the current directory as if it were found in the FPATH variable. If
path does not begin with /, it is checked for relative to the directory
being searched.
The .paths file is then checked for a line of the form PLUGIN_LIB=lib?
name [: libname] Each library named by libname will be
searched for as if it were an option argument to builtin -f, and if it
contains a built-in of the specified name this will be executed instead
of a command by this name. Any built-in loaded from a library found
this way will be associated with the directory containing the .paths
file so it will only execute if not found in an earlier directory.
Finally, the directory will be checked for a file of the given name.
If the file has execute permission but is not an a.out file, it is as?
sumed to be a file containing shell commands. A separate shell is
spawned to read it. All non-exported variables are removed in this
case. If the shell command file doesn't have read permission, or if
the setuid and/or setgid bits are set on the file, then the shell exe?
cutes an agent whose job it is to set up the permissions and execute
the shell with the shell command file passed down as an open file. If
the .paths contains a line of the form name=value in the first or sec?
ond line, then the environment variable name is modified by prepending
the directory specified by value to the directory list. If value is
not an absolute directory, then it specifies a directory relative to
the directory that the executable was found. If the environment vari?
able name does not already exist it will be added to the environment
list for the specified command. A parenthesized command is executed in
a subshell without removing non-exported variables.

Command Re-entry.
The text of the last HISTSIZE (default 512) commands entered from a

terminal device is saved in a history file. The file $SHOME/.sh_history Page 49/97

is used if the HISTFILE variable is not set or if the file it names is
not writable. A shell can access the commands of all interactive
shells which use the same named HISTFILE. The built-in command hist is
used to list or edit a portion of this file. The portion of the file
to be edited or listed can be selected by number or by giving the first
character or characters of the command. A single command or range of
commands can be specified. If you do not specify an editor program as
an argument to hist then the value of the variable HISTEDIT is used.
If HISTEDIT is unset, the obsolete variable FCEDIT is used. If FCEDIT
is not defined, then /bin/ed is used. The edited command(s) is printed
and re-executed upon leaving the editor unless you quit without writ?
ing. The -s option (and in obsolete versions, the editor name -) is
used to skip the editing phase and to re-execute the command. In this
case a substitution parameter of the form old=new can be used to modify
the command before execution. For example, with the preset alias r,
which is aliased to ?hist -s?, typing 'r bad=good c¢' will re-execute
the most recent command which starts with the letter c, replacing the
first occurrence of the string bad with the string good.

In-line Editing Options.
Normally, each command line entered from a terminal device is simply
typed followed by a new-line CRETURN' or "LINE FEED"). If either the
emacs, gmacs, or vi option is active, the user can edit the command
line. To be in either of these edit modes set the corresponding op?
tion. An editing option is automatically selected each time the VISUAL
or EDITOR variable is assigned a value ending in either of these option
names.
The editing features require that the user's terminal accept "'RETURN'
as carriage return without line feed and that a space (" ') must over?
write the current character on the screen.
Unless the multiline option is on, the editing modes implement a con?
cept where the user is looking through a window at the current line.
The window width is the value of COLUMNS if it is defined, otherwise

80. If the window width is too small to display the prompt and leave Page 50/97

at least 8 columns to enter input, the prompt is truncated from the

left. If the line is longer than the window width minus two, a mark is
displayed at the end of the window to notify the user. As the cursor
moves and reaches the window boundaries the window will be centered
about the cursor. The mark is a > (<, *) if the line extends on the

right (left, both) side(s) of the window.

The search commands in each edit mode provide access to the history
file. Only strings are matched, not patterns, although a leading ~ in

the string restricts the match to begin at the first character in the

line.

Each of the edit modes has an operation to list the files or commands
that match a partially entered word. When applied to the first word on

the line, or the first word after a ;, |, &, or (, and the word does

not begin with ? or contain a /, the list of aliases, functions, and
executable commands defined by the PATH variable that could match the
partial word is displayed. Otherwise, the list of files that match the

given word is displayed. If the partially entered word does not con?

tain any file expansion characters, a * is appended before generating
these lists. After displaying the generated list, the input line is

redrawn. These operations are called command name listing and file

name listing, respectively. There are additional operations, referred

to as command name completion and file name completion, which compute

the list of matching commands or files, but instead of printing the

list, replace the current word with a complete or partial match. For

file name completion, if the match is unique, a/is appended if the

file is a directory and a space is appended if the file is not a direc?

tory. Otherwise, the longest common prefix for all the matching files
replaces the word. For command name completion, only the portion of
the file names after the last / are used to find the longest command
prefix. If only a single name matches this prefix, then the word is
replaced with the command name followed by a space. When using a tab
for completion that does not yield a unique match, a subsequent tab

will provide a numbered list of matching alternatives. A specific se?

Page 51/97

lection can be made by entering the selection number followed by a tab.
Key Bindings.
The KEYBD trap can be used to intercept keys as they are typed and
change the characters that are actually seen by the shell. This trap
is executed after each character (or sequence of characters when the
first character is ESC) is entered while reading from a terminal. The
variable .sh.edchar contains the character or character sequence which
generated the trap. Changing the value of .sh.edchar in the trap ac?
tion causes the shell to behave as if the new value were entered from
the keyboard rather than the original value.
The variable .sh.edcol is set to the input column number of the cursor
at the time of the input. The variable .sh.edmode is set to ESC when
in vi insert mode (see below) and is null otherwise. By prepending
${.sh.editmode} to a value assigned to .sh.edchar it will cause the
shell to change to control mode if it is not already in this mode.
This trap is not invoked for characters entered as arguments to editing
directives, or while reading input for a character search.
Emacs Editing Mode.
This mode is entered by enabling either the emacs or gmacs option. The
only difference between these two modes is the way they handle ~T. To
edit, the user moves the cursor to the point needing correction and
then inserts or deletes characters or words as needed. All the editing
commands are control characters or escape sequences. The notation for
control characters is caret (*) followed by the character. For exam?
ple, ~F is the notation for control F. This is entered by depressing
“f' while holding down the "CTRL' (control) key. The "SHIFT' key is
not depressed. (The notation ~? indicates the DEL (delete) key.)
The notation for escape sequences is M- followed by a character. For
example, M-f (pronounced Meta f) is entered by depressing ESC (ascii
033) followed by “f'. (M-F would be the notation for ESC followed by
"SHIFT' (capital) "F'.)
All edit commands operate from any place on the line (not just at the

beginning). Neither the "RETURN' nor the "LINE FEED' key is entered Page 52/97

after edit commands except when noted.

The M-[multi-character commands below are DEC VT220 escape sequences

generated by special keys on standard PC keyboards, such as the arrow

keys. You could type them directly but they are meant to recognize the
keys in question, which are indicated in parentheses.

F Move cursor forward (right) one character.

M-[C (Right arrow) Same as "F.

M-f Move cursor forward one word. (The emacs editor's idea of a
word is a string of characters consisting of only letters,
digits and underscores.)

B Move cursor backward (left) one character.

M-[D (Left arrow) Same as "B.

M-b Move cursor backward one word.

A Move cursor to start of line.

M-[H (Home) Same as "A.

= Move cursor to end of line.

M-[F (End) Same as "E.

M-[Y Same as "E.

ANchar Move cursor forward to character char on current line.

M-~char Move cursor backward to character char on current line.

AXAX Interchange the cursor and mark.

erase (User defined erase character as defined by the stty(1) com?
mand, usually *H .) Delete previous character.

Inext (User defined literal next character as defined by the
stty(1) command, or "V if not defined.) Removes the next
character's editing features (if any).

"D Delete current character.

M-[3~ (Forward delete) Same as "D.

M-d Delete current word.

M-"H (Meta-backspace) Delete previous word.

M-h Delete previous word.

M-A? (Meta-DEL) Delete previous word (if your interrupt character

is *? (DEL, the default) then this command will not work).

Page 53/97

T Transpose current character with previous character and ad?
vance the cursor in emacs mode. Transpose two previous char?
acters in gmacs mode.

"C Capitalize current character.

M-c Capitalize current word.

M-I Change the current word to lower case.

K Delete from the cursor to the end of the line. If preceded
by a numerical parameter whose value is less than the current
cursor position, then delete from given position up to the
cursor. If preceded by a numerical parameter whose value is
greater than the current cursor position, then delete from
cursor up to given cursor position.

AW Kill from the cursor to the mark.

M-p Push the region from the cursor to the mark on the stack.

kill (User defined kill character as defined by the stty command,
usually ~U .) Kill the entire current line. If two kill
characters are entered in succession, all kill characters
from then on cause a line feed (useful when using paper ter?

minals). A subsequent pair of kill characters undoes this

change.

Y Restore last item removed from line. (Yank item back to the
line.)

L Line feed and print current line.

M-~L Clear the screen.

@ (Null character) Set mark.

M-space (Meta space) Set mark.

S| (New line) Execute the current line.

"M (Return) Execute the current line.

eof End-of-file character, normally "D, is processed as an End-
of-file only if the current line is null.

P Fetch previous command. Each time *P is entered the previous
command back in time is accessed. Moves back one line when

not on the first line of a multi-line command.

Page 54/97

M-[A

M-<
M->

N

M-[B

"Rstring Reverse search history for a previous command line containing

O

(Up arrow) If the cursor is at the end of the line, it is
equivalent to *R with string set to the contents of the cur?
rent line. Otherwise, it is equivalent to "P.

Fetch the least recent (oldest) history line.

Fetch the most recent (youngest) history line.

Fetch next command line. Each time "N is entered the next
command line forward in time is accessed.

(Down arrow) Equivalent to ~N.

string. If a parameter of zero is given, the search is for?

ward. String is terminated by a ‘'/RETURN' or "NEW LINE'. If

string is preceded by a *, the matched line must begin with

string. If string is omitted, then the next command line

containing the most recent string is accessed. In this case

a parameter of zero reverses the direction of the search.
Operate - Execute the current line and fetch the next line

relative to current line from the history file.

M-digits (Escape) Define numeric parameter, the digits are taken as a

parameter to the next command. The commands that accept a
parameter are ~F, ~B, erase, "C, "D, *K, "R, *P, *N, *], M-,
M-7], M-_, M-=, M-b, M-c, M-d, M-f, M-h, M-I, M-"H, and the

arrow keys and forward-delete key.

M-letter Soft-key - Your alias list is searched for an alias by the

name _letter and if an alias of this name is defined, its
value will be inserted on the input queue. The letter must

not be one of the above meta-functions.

M-[letter Soft-key - Your alias list is searched for an alias by the

name __ letter and if an alias of this name is defined, its
value will be inserted on the input queue. This can be used
to program function keys on many terminals.

The last word of the previous command is inserted on the
line. If preceded by a numeric parameter, the value of this

parameter determines which word to insert rather than the

Page 55/97

last word.

M-_ Same as M-..

M-* Attempt file name generation on the current word. An aster?
isk is appended if the word doesn't match any file or contain
any special pattern characters.

M-ESC Command or file name completion as described above.

N tab Attempts command or file name completion as described above.
If a partial completion occurs, repeating this will behave as
if M-= were entered. If no match is found or entered after
space, a tab is inserted.

M-= If not preceded by a numeric parameter, it generates the list
of matching commands or file names as described above. Oth?
erwise, the word under the cursor is replaced by the item
corresponding to the value of the numeric parameter from the
most recently generated command or file list. If the cursor
is not on a word, it is inserted instead.

U Multiply parameter of next command by 4.

\ If the backslashctrl shell option is on (which is the default
setting), this escapes the next character. Editing charac?
ters, the user's erase, kill and interrupt (normally ~C)
characters may be entered in a command line or in a search
string if preceded by a\. The \removes the next charac?
ter's editing features (if any). See also Inext which is not
subject to any shell option.

M-~V Display version of the shell.

M-# If the line does not begin with a #, a # is inserted at the
beginning of the line and after each new-line, and the line
is entered. This causes a comment to be inserted in the his?
tory file. If the line begins with a #, the # is deleted and
one # after each new-line is also deleted.

Vi Editing Mode.
There are two typing modes. Initially, when you enter a command you

are in the input mode. To edit, the user enters control mode by typing Page 56/97

ESC (033) and moves the cursor to the point needing correction and then
inserts or deletes characters or words as needed. Most control com?
mands accept an optional repeat count prior to the command.
The notation for control characters used below is » followed by a char?
acter. For instance, ~H is entered by holding down the Control key and
pressing H. [(Control+|) is equivalent to the ESC key. The notation
for escape sequences is /[followed by one or more characters.
The [(ESC [) multi-character commands below are DEC VT220 escape se?
guences generated by special keys on standard PC keyboards, such as the
arrow keys, which are indicated in parentheses. When in input mode,
these keys will switch you to control mode before performing the asso?
ciated action. These sequences can use preceding repeat count parame?
ters, but only when the ~[and the subsequent [are entered into the
input buffer at the same time, such as when pressing one of those keys.
Input Edit Commands
By default the editor is in input mode.
erase (User defined erase character as defined by the stty
command, usually “H or #.) Delete previous character.
W Delete the previous blank separated word. On some
systems the viraw option may be required for this to
work.
eof As the first character of the line causes the shell to
terminate unless the ignoreeof option is set. Other?
wise this character is ignored.
Inext (User defined literal next character as defined by the
stty(1) or 7V if not defined.) Removes the next char?
acter's editing features (if any). On some systems
the viraw option may be required for this to work.
\ If the backslashctrl shell option is on (which is the
default setting), this escapes the next erase or Kill
character.
Altab Attempts command or file name completion as described

above and returns to input mode. If a partial comple?

Page 57/97

tion occurs, repeating this will behave as if = were
entered from control mode. If no match is found or
entered after space, a tab is inserted.
Motion Edit Commands

These commands will move the cursor.

[count]l Cursor forward (right) one character.

[count][[C
(Right arrow) Same as |.

[count]w Cursor forward one alphanumeric word.

[count]W Cursor to the beginning of the next word that follows
a blank.

[count]e Cursor to end of word.

[count]E Cursor to end of the current blank delimited word.

[count]h Cursor backward (left) one character.

[count][[D
(Left arrow) Same as h.

[count]b Cursor backward one word.

[count]B Cursor to preceding blank separated word.

[count]] Cursor to column count.

[count]fc Find the next character c in the current line.

[count]Fc Find the previous character c in the current line.

[count]tc Equivalent to f followed by h.

[count]Tc Equivalent to F followed by .

[count]; Repeats count times, the last single character find
command, f, F, t, or T.

[count], Reverses the last single character find command count
times.

0 Cursor to start of line.

N[H (Home) Same as 0.

A Cursor to first non-blank character in line.

$ Cursor to end of line.

NI[F (End) Same as $.

AIY Same as $. Page 58/97

% Moves to balancing (,), {, }, [, or]. If cursor is
not on one of the above characters, the remainder of
the line is searched for the first occurrence of one
of the above characters first.
Search Edit Commands

These commands access your command history.

[count]lk Fetch previous command. Each time k is entered the

previous command back in time is accessed.
[count]- Equivalent to k.
[count][[A
(Up arrow) If cursor is at the end of the line it is
equivalent to / with string set to the contents of the

current line. Otherwise, it is equivalent to k.

[count]j Fetch next command. Each time jis entered the next

command forward in time is accessed.
[count]+ Equivalent to j.
[count][[B

(Down arrow) Equivalent to j.

[count]G The command number count is fetched. The default is

the least recent history command.

I/string Search backward through history for a previous command

containing string. String is terminated by a "'RETURN'
or 'NEW LINE'. If stringis preceded by a *, the
matched line must begin with string. If string is
null, the previous string will be used.

?string Same as / except that search will be in the forward

direction.

n Search for next match of the last patternto / or ?
commands.

N Search for next match of the last patternto/ or ?,

but in reverse direction.
Text Modification Edit Commands

These commands will modify the line.

Page 59/97

a Enter input mode and enter text after the current
character.

A Append text to the end of the line. Equivalent to $a.

[count]cmotion

c[count]motion
Delete current character through the character that
motion would move the cursor to and enter input mode.
If motion is c, the entire line will be deleted and
input mode entered.

C Delete the current character through the end of line
and enter input mode. Equivalent to c$.

S Equivalent to cc.

[count]s Replace characters under the cursor in input mode.

D Delete the current character through the end of line.
Equivalent to d$.

[count]dmotion

d[count]motion
Delete current character through the character that
motion would move to. If motionis d , the entire
line will be deleted.

i Enter input mode and insert text before the current
character.

I Insert text before the beginning of the line. Equiva?
lent to Oi.

[count]P Place the previous text modification before the cur?
sor.

[count]p Place the previous text modification after the cursor.

R Enter input mode and replace characters on the screen
with characters you type overlay fashion.

[count]rc Replace the count character(s) starting at the current
cursor position with ¢, and advance the cursor.

[count]x Delete current character.

[count]M[[3~ Page 60/97

(Forward delete) Same as x.

[count]X Delete preceding character.

[count]. Repeat the previous text modification command.

[count]? Invert the case of the count character(s) starting at
the current cursor position and advance the cursor.

[count] _ Causes the count word of the previous command to be
appended and input mode entered. The last word is
used if count is omitted.

* Causes an * to be appended to the current word and
file name generation attempted. If no match is found,
it rings the bell. Otherwise, the word is replaced by
the matching pattern and input mode is entered.

\ Command or file name completion as described above.

Other Edit Commands

Miscellaneous commands.

[count]lymotion

y[count]motion
Yank current character through character that motion
would move the cursor to and puts them into the delete
buffer. The text and cursor are unchanged.

yy Yanks the entire line.

Y Yanks from current position to end of line. Equiva?
lent to y$.

u Undo the last text modifying command.

U Undo all the text modifying commands performed on the
line.

[count]lv Returns the command hist -e ${VISUAL:-${EDITOR:-vi}}
count in the input buffer. If count is omitted, then
the current line is used.

AL Line feed and print current line. Has effect only in
control mode.

AN (New line) Execute the current line, regardless of

mode.

Page 61/97

M (Return) Execute the current line, regardless of mode.

If the first character of the command is a #, then
this command deletes this # and each # that follows a
newline. Otherwise, sends the line after inserting a
in front of each line in the command. Useful for
causing the current line to be inserted in the history
as a comment and uncommenting previously commented
commands in the history file.

[count]= If count is not specified, it generates the list of
matching commands or file names as described above.
Otherwise, the word under the cursor is replaced by
the count item from the most recently generated com?
mand or file list. If the cursor is not on a word, it
is inserted instead.

@letter Your alias list is searched for an alias by the name
_letter and if an alias of this name is defined, its
value will be inserted on the input queue for process?
ing.

"V Display version of the shell.

Built-in Commands.

The simple-commands listed below are built in to the shell and are exe?
cuted in the same process as the shell. The effects of any added In?
put/Output redirections are local to the command, except for the exec
and redirect commands. Unless otherwise indicated, the output is writ?

ten on standard output (file descriptor 1) and the exit status, when

there is no syntax error, is zero. Except for :, true, false, and

echo, all built-in commands accept -- to indicate end of options, and

are self-documenting.

The self-documenting commands interpret the option --man as a request
to display that command's own manual page, --help as a request to dis?

play the OPTIONS section from their manual page, and -? as a request
to print a brief usage message. All these are processed as error mes?

sages, so they are written on standard error (file descriptor 2) and to

Page 62/97

pipe them into a pager such as more(1) you need to add a 2>&1 redirect?
ion before the |. The display of boldface text depends on whether stan?
dard error is on a terminal, so is disabled when using a pager. Export?
ing the ERROR_OPTIONS environment variable with a value containing em?
phasis will force this on; a value containing noemphasis forces it off.
The test/[command needs an additional -- argument to recognize self-
documentation options, e.g. test --man --. The exec and redirect com?
mands, as they make redirections permanent, should use self-documenta?
tion options in a subshell when redirecting, for example: (redirect
--man) 2>&1. There are advanced output options as well; see getopts
--man for more information.
Commands that are preceded by a ? symbol below are special built-
in commands and are treated specially in the following ways:
1. Variable assignment lists preceding the command remain in effect

when the command completes.
2. 1/O redirections are processed after variable assignments.
3. Errors cause a script that contains them to abort.
4. They are not valid function names.
Commands that are preceded by a ? symbol below are declaration com?
mands. Any following words that are in the format of a variable as?
signment are expanded with the same rules as a variable assignment.
This means that tilde expansion is performed after the = sign, array
assignments of the form varname=(assign_list) are supported, and field
splitting and file name generation are not performed.
?:[arg...]

The command only expands parameters.
?.name[arg ...]

If name is a function defined with the function name reserved

word syntax, the function is executed in the current environment

(as if it had been defined with the name() syntax). Otherwise

if name refers to a file, the file is read in its entirety and

the commands are executed in the current shell environment. The

search path specified by PATH is used to find the directory con?

Page 63/97

taining the file. If any arguments arg are given, they become
the positional parameters while processing the . command and
the original positional parameters are restored upon completion.
Otherwise the positional parameters are unchanged. The exit
status is the exit status of the last command executed.

[expression]
The [command is the same as test, with the exception that an
additional closing] argument is required. See test below.

alias [-ptx] [name[=value]] ...
alias with no arguments prints the list of aliases in the form
name=value on standard output. The -p option causes the word
alias to be inserted before each one. When one or more argu?
ments are given, an alias is defined for each name whose value
is given. A trailing space in value causes the next word to be
checked for alias substitution. With the -t option, each name
is looked up as a command in $PATH and its path is added to the
hash table as a 'tracked alias'. If no name is given, this
prints the hash table. See hash. Without the -t option, for
each name in the argument list for which no value is given, the
name and value of the alias is printed. The obsolete -x option
has no effect. The exit status is non-zero if a name is given,
but no value, and no alias has been defined for the name.

autoload name ...
Marks each name undefined so that the FPATH variable will be
searched to find the function definition when the function is
referenced. The same as typeset -fu.

bg [job...]
This command is only on systems that support job control. Puts
each specified job into the background. The current job is put
in the background if job is not specified. See Jobs for a de?
scription of the format of job.

? break [n]

Exit from the enclosing for, while, until, or select loop, if Page 64/97

any. If nis specified, then break n levels.

builtin [-ds] [-f file] [name ...]
If name is not specified, and no -f option is specified, the
built-ins are printed on standard output. The -s option prints
only the special built-ins. Otherwise, each name represents the
pathname whose basename is the name of the built-in. The entry
point function name is determined by prepending b_ to the built-
in name. A built-in specified by a pathname will only be exe?
cuted when that pathname would be found during the path search.
Built-ins found in libraries loaded via the .paths file will as?
sociate with the pathname of the directory containing the .paths
file.
The ISO C/C++ prototype is b_mycommand(int argc, char *argv[],
void *context) for the builtin command mycommand where argv is
array an of argc elements and context is an optional pointer to
a Shell_t structure as described in <ast/shell.h>.
Special built-ins cannot be bound to a pathname or deleted. The
-d option deletes each of the given built-ins. On systems that
support dynamic loading, the -f option names a shared library
containing the code for built-ins. The shared library prefix
and/or suffix, which depend on the system, can be omitted. Once
a library is loaded, its symbols become available for subsequent
invocations of builtin. Multiple libraries can be specified
with separate invocations of the builtin command. Libraries are
searched in the reverse order in which they are specified. When
a library is loaded, it looks for a function in the library
whose name is lib_init() and invokes this function with an argu?
ment of 0.

cd[-LP][arg]

cd [-LP] old new
This command can be in either of two forms. In the first form
it changes the current directory to arg. If arg is - the direc?

tory is changed to the previous directory. The shell variable Page 65/97

HOME is the default arg. The variable PWD is set to the current
directory. The shell variable CDPATH defines the search path
for the directory containing arg. Alternative directory names
are separated by a colon (:). The default path is <null> (spec?
ifying the current directory). Note that the current directory
is specified by a null path name, which can appear immediately
after the equal sign or between the colon delimiters anywhere
else in the path list. If arg begins with a / then the search
path is not used. Otherwise, each directory in the path is
searched for arg.
The second form of cd substitutes the string new for the string
old in the current directory name, PWD, and tries to change to
this new directory.
By default, symbolic link names are treated literally when find?
ing the directory name. This is equivalent to the -L option.
The -P option causes symbolic links to be resolved when deter?
mining the directory. The last instance of -L or -P on the com?
mand line determines which method is used.
The cd command may not be executed by rksh.

command [-pvxV] name [arg ...]
With the -v option, command is equivalent to the built-in whence
command described below. The -V option causes command to act
like whence -v.
Without the -v or -V options, command executes name with the ar?
guments given by arg. Functions and aliases will not be
searched for when finding name. If name refers to a special
built-in, as marked with ? in this manual, command disables the
special properties described above for that mark, executing the
command as a regular built-in. (For example, using command set
-0 option-name prevents a script from terminating when an in?
valid option name is given.)
The -p option causes the operating system's standard utilities

path (as output by getconf PATH) to be searched rather than the Page 66/97

one defined by the value of PATH.
The -x option runs name as an external command, bypassing built-
ins. If the arguments contain at least one word that expands to
multiple arguments, such as "$@" or *.txt, then the -x option
also allows executing external commands with argument lists that
are longer than the operating system allows. This functionality
is similar to xargs(1) but is easier to use. The shell does this
by invoking the external command multiple times if needed, di?
viding the expanded argument list over the invocations. Any ar?
guments that come before the first word that expands to multiple
arguments, as well as any that follow the last such word, are
considered static arguments and are repeated for each invoca?
tion. This allows each invocation to use the same command op?
tions, as well as the same trailing destination arguments for
commands like cp(1) or mv(1l). When all invocations are com?
pleted, command -x exits with the status of the invocation that
had the highest exit status. (Note that command -x may still
fail with an "argument list too long" error if a single argument
exceeds the maximum length of the argument list, or if a long
arguments list contains no word that expands to multiple argu?
ments.)

? compound vhame[=value] ...
Causes each vname to be a compound variable. The same as type?
set -C.

? continue [n]
Resume the next iteration of the enclosing for, while, until, or
select loop. If n is specified, then resume at the n-th enclos?
ing loop.

disown [job...]
Causes the shell not to send a HUP signal to each given job, or
all active jobs if job is omitted, when a login shell termi?
nates.

echo[arg...] Page 67/97

When the first arg does not begin with a -, and none of the ar?
guments contain a \, then echo prints each of its arguments sep?
arated by a space and terminated by a new-line. Otherwise, the
behavior of echo is system dependent and print or printf de?
scribed below should be used. See echo(1) for usage and de?
scription.

? enum [-i]type[=(value ...)]
Creates a declaration command named type that is an integer type
that allows one of the specified values as enumeration names.
If =(value ...) is omitted, then type must be an indexed array
variable with at least two elements and the values are taken
from this array variable. If -i is specified the values are
case-insensitive. Declaration commands are created as special
builtins that cannot be removed or overridden by shell func?
tions.

?eval[arg...]
The arguments are read as input to the shell and the resulting
command(s) executed.

?exec[-c][-aname][arg...]
If arg is given, the command specified by the arguments is exe?
cuted in place of this shell without creating a new process.
The -c option causes the environment to be cleared before apply?
ing variable assignments associated with the exec invocation.
The -a option causes name rather than the first arg, to become
argv[0] for the new process. If arg is not given and only 1/O
redirections are given, then this command persistently modifies
file descriptors as in redirect.

?exit[n]
Causes the shell to exit with the exit status specified by n.
The value will be the least significant 8 bits of the specified
status. If n is omitted, then the exit status is that of the
last command executed. An end-of-file will also cause the shell

to exit except for a shell which has the ignoreeof option (see Page 68/97

set below) turned on.

?? export [-p] [name[=value]] ...
If name is not given, the names and values of each variable with
the export attribute are printed with the values quoted in a
manner that allows them to be re-input. The export command is
the same as typeset -x except that if you use export within a
function, no local variable is created. The -p option causes
the word export to be inserted before each one. Otherwise, the
given names are marked for automatic export to the environment
of subsequently-executed commands.

false Does nothing, and exits 1. Used with until for infinite loops.

fc[-e ename][-Nnum][-nIr][first[last]]

fc -s [old=new] [command]
The same as hist.

fg[job...]
This command is only on systems that support job control. Each
job specified is brought to the foreground and waited for in the
specified order. Otherwise, the current job is brought into the
foreground. See Jobs for a description of the format of job.

? float vname[=value] ...
Declares each vname to be a long floating point number. The
same as typeset -IE.

functions [-Stux] [name ...]
Lists functions. The same as typeset -f.

getconf [name [pathname]]
Prints the current value of the configuration parameter given by
name. The configuration parameters are defined by the IEEE
POSIX 1003.1 and IEEE POSIX 1003.2 standards. (See pathconf(2)
and sysconf(3).) The pathname argument is required for parame?
ters whose value depends on the location in the file system. If
no arguments are given, getconf prints the names and values of
the current configuration parameters. The pathname / is used

for each of the parameters that requires pathname.

Page 69/97

getopts [-a name] optstring vname [arg ... |
Checks arg for legal options. If arg is omitted, the positional
parameters are used. An option argument begins with a + or a -.
An option not beginning with + or - or the argument -- ends the
options. Options beginning with + are only recognized when opt?
string begins with a +. optstring contains the letters that
getopts recognizes. If a letter is followed by a :, that option
is expected to have an argument. The options can be separated
from the argument by blanks. The option -? causes getopts to
generate a usage message on standard error. The -a argument can
be used to specify the name to use for the usage message, which
defaults to $0.
getopts places the next option letter it finds inside variable
vname each time it is invoked. The option letter will be
prepended with a + when arg begins with a +. The index of the
next arg is stored in OPTIND. The option argument, if any, gets
stored in OPTARG.
A leading : in optstring causes getopts to store the letter of
an invalid option in OPTARG, and to set vname to ? for an un?
known option and to : when a required option argument is miss?
ing. Otherwise, getopts prints an error message. The exit sta?
tus is non-zero when there are no more options.
There is no way to specify any of the options :, +, -, ?, [, and
]. The option # can only be specified as the first option.

hash [-r] [utility]
hash displays or modifies the hash table with the locations of
recently used programs. If given no arguments, it lists all com?
mand/path associations (a.k.a. 'tracked aliases') in the hash
table. Otherwise, hash performs a PATH search for each utility
supplied and adds the result to the hash table. The -r option
empties the hash table. This can also be achieved by resetting
PATH.

hist [-e ename] [-N num][-nlr][first[last]] Page 70/97

hist -s [old=new] [command]
In the first form, a range of commands from first to last is se?
lected from the last HISTSIZE commands that were typed at the
terminal. The arguments first and last may be specified as a
number or as a string. A string is used to locate the most re?
cent command starting with the given string. A negative number
is used as an offset to the current command number. If the -|
option is selected, the commands are listed on standard output.
Otherwise, the editor program ename is invoked on a file con?
taining these keyboard commands. If ename is not supplied, then
the value of the variable HISTEDIT is used. If HISTEDIT is not
set, then FCEDIT (default /bin/ed) is used as the editor. When
editing is complete, the edited command(s) is executed if the
changes have been saved. If last is not specified, then it will
be set to first. If firstis not specified, the default is the
previous command for editing and -16 for listing. The option -r
reverses the order of the commands and the option -n suppresses
command numbers when listing. In the second form, command is
interpreted as first described above and defaults to the last
command executed. The resulting command is executed after the
optional substitution old=new is performed. The option -N
causes hist to start num commands back.

? integer vname[=value] ...
Declares each vname to be a long integer number. The same as
typeset -li.

jobs[-Inp][job ...]
Lists information about each given job; or all active jobs if
job is omitted. The -l option lists process ids in addition to
the normal information. The -n option only displays jobs that
have stopped or exited since last notified. The -p option
causes only the process group to be listed. See Jobs for a de?
scription of the format of job.

kill [-s signame] job ... Page 71/97

kill [-n signum] job ...

kill -LI [sig ...]
Sends either the TERM (terminate) signal or the specified signal
to the specified jobs or processes. Signals are either given by
number with the -n option or by name with the -s option (as
given in <signal.h>, stripped of the prefix ~"SIG" with the ex?
ception that SIGCLD is named CHLD). For backward compatibility,
the n and s can be omitted and the number or name placed immedi?
ately after the -. If the signal being sent is TERM (terminate)
or HUP (hangup), then the job or process will be senta CONT
(continue) signal if it is stopped. The argument job can be the
process id of a process that is not a member of one of the ac?
tive jobs. See Jobs for a description of the format of job. In
the third form, Kill -I, or kill -L, if sig is not specified,
the signal names are listed. The -l option list only the signal
names. -L options lists each signal name and corresponding num?
ber. Otherwise, for each sig that is a name, the corresponding
signal number is listed. For each sig that is a number, the
signal name corresponding to the least significant 8 bits of sig
is listed.

let arg ...
Each arg is a separate arithmetic expression to be evaluated.
let only recognizes octal constants starting with 0 when the set
option letoctal is on. See Arithmetic Evaluation above, for a
description of arithmetic expression evaluation.
The exit status is 0 if the value of the last expression is non-
zero, and 1 otherwise.

? nameref vname[=refname] ...
Declares each vhame to be a variable name reference. The same
as typeset -n.

print [-CRenprsv] [-u unit][-fformat][arg ...]
With no options or with option - or --, each arg is printed on

standard output. The -f option causes the arguments to be Page 72/97

printed as described by printf. In this case, any e, n, r, R
options are ignored. Otherwise, unless the -C, -R, -r, or -v
are specified, the following escape conventions will be applied:
\a The alert character (ascii 07).
\b The backspace character (ascii 010).
\c Causes print to end without processing more arguments and
not adding a new-line.
\f The formfeed character (ascii 014).
\n The newline character (ascii 012).
\r The carriage return character (ascii 015).
\t The tab character (ascii 011).
\v The vertical tab character (ascii 013).
\E The escape character (ascii 033).
\\ The backslash character \.
\Ox The character defined by the 1, 2, or 3-digit octal
string given by x.
The -R option will print all subsequent arguments and options
other than -n. The -e causes the above escape conventions to be
applied. This is the default behavior. It reverses the effect
of an earlier -r. The -p option causes the arguments to be
written onto the pipe of the process spawned with |& instead of
standard output. The -v option treats each arg as a variable
name and writes the value in the printf %B format. The -C op?
tion treats each arg as a variable name and writes the value in
the printf %#B format. The -s option causes the arguments to be
written onto the history file instead of standard output. The
-u option can be used to specify a one digit file descriptor
unit number unit on which the output will be placed. The de?
faultis 1. If the option -n is used, no new-line is added to
the output.
printf format [arg ...]
The arguments arg are printed on standard output in accordance

with the ANSI-C formatting rules associated with the format Page 73/97

string format. If the number of arguments exceeds the number of

format specifications, the format string is reused to format re?

maining arguments. The following extensions can also be used:

%b A %b format can be used instead of %s to cause escape se?
guences in the corresponding arg to be expanded as de?
scribed in print.

%B A %B option causes each of the arguments to be treated as
variable names and the binary value of variable will be
printed. The alternate flag # causes a compound variable
to be output on a single line. This is most useful for
compound variables and variables whose attribute is -b.

%H A %H format can be used instead of %s to cause characters
in arg that are special in HTML and XML to be output as
their entity name. The alternate flag # formats the out?
put for use as a URI.

%p A %p format will convert the given number to hexadecimal.
%P A %P format can be used instead of %s to cause arg to be
interpreted as an extended regular expression and be

printed as a shell pattern.

%q A %q format can be used instead of %s to cause the re?
sulting string to be quoted in a manner than can be rein?
put to the shell. When q is preceded by the alternative
format specifier, #, the string is quoted in manner suit?
able as a field in a .csv format file.

%(date-format)T
A %(date-format)T format can be used to treat an argument
as a date/time string and to format the date/time accord?
ing to the date-format.

%Q A %Q format will convert the given number of seconds to
readable time.

%R A %R format can be used instead of %s to cause arg to be
interpreted as a shell pattern and to be printed as an

extended regular expression.

Page 74/97

%Z A %Z format will output a byte whose value is 0.

%d The precision field of the %d format can be followed by a
. and the output base. In this case, the # flag charac?
ter causes base# to be prepended.

The # flag, when used with the %d format without an out?
put base, displays the output in powers of 1000 indicated
by one of the following suffixes: k M G T P E, and when
used with the %i format displays the output in powers of
1024 indicated by one of the following suffixes: Ki Mi Gi
Ti Pi Ei.

= The = flag centers the output within the specified field
width.

L The L flag, when used with the %c or %s formats, treats
precision as character width instead of byte count.

, The, flag, when used with the %d or %f formats, sepa?
rates groups of digits with the grouping delimiter (, on
groups of 3 in the C locale).

pwd [-LP]
Outputs the value of the current working directory. The -L op?
tion is the default; it prints the logical name of the current
directory. If the -P option is given, all symbolic links are
resolved from the name. The last instance of -L or -P on the
command line determines which method is used.
read [-ACSprsv][-ddelim][-nn][[-Nn][-ttimeout][-u
unit] [vname?prompt] [vname ...]

The shell input mechanism. One line is read and is broken up

into fields using the characters in IFS as separators. The es?

cape character, \, is used to remove any special meaning for the
next character and for line continuation. The -d option causes
the read to continue to the first character of delim rather than

new-line. The -n option causes at most n bytes to read rather a

full line but will return when reading from a slow device as

soon as any characters have been read. The -N option causes ex?

Page 75/97

actly n to be read unless an end-of-file has been encountered or
the read times out because of the -t option. In raw mode, -r,
the \ character is not treated specially. The first field is
assigned to the first vname, the second field to the second
vname, etc., with leftover fields assigned to the last vname.
When vname has the binary attribute and -n or -N is specified,
the bytes that are read are stored directly into the variable.
If the -v is specified, then the value of the first vname will
be used as a default value when reading from a terminal device.
The -A option causes the variable vname to be unset and each
field that is read to be stored in successive elements of the
indexed array vname. The -C option causes the variable vname to
be read as a compound variable. Blanks will be ignored when
finding the beginning open parenthesis. The -S option causes
the line to be treated like a record in a .csv format file so
that double quotes can be used to allow the delimiter character
and the new-line character to appear within a field. The -p op?
tion causes the input line to be taken from the input pipe of a
process spawned by the shell using |&. If the -s option is
present, the input will be saved as a command in the history
file. The option -u can be used to specify a one digit file de?
scriptor unit unit to read from. The file descriptor can be
opened with the exec special built-in command. The default
value of unit nis 0. The option -t is used to specify a time?
out in seconds when reading from a terminal or pipe. If vname
is omitted, then REPLY is used as the default vname. An end-of-
file with the -p option causes cleanup for this process so that
another can be spawned. If the first argument contains a ?, the
remainder of this word is used as a prompt on standard error
when the shell is interactive. The exit status is 0 unless an
end-of-file is encountered or read has timed out.

?? readonly [-p] [vname[=value]] ...

If vname is not given, the names and values of each variable Page 76/97

with the readonly attribute is printed with the values quoted in
a manner that allows them to be re-inputted. The -p option
causes the word readonly to be inserted before each one. Other?
wise, the given vnames are marked readonly and these names can?
not be changed by subsequent assignment. Unlike typeset -r ,
readonly does not create a function-local scope and the given
vnames are marked globally read-only by default. When defining
a type, if the value of a readonly sub-variable is not defined
the value is required when creating each instance.
redirect
This command only accepts input/output redirections. It can
open and close files and modify file descriptors from 0 to 9 as
specified by the input/output redirection list (see the In?
put/Output section above), with the difference that the effect
persists past the execution of the redirect command. When in?
voking another program, file descriptors greater than 2 that
were opened with this mechanism are only passed on if they are
explicitly redirected to themselves as part of the invocation
(e.g. 4>&4) or if the posix option is set.
?return[n]
Causes a shell function or . script to return to the invoking
script with the exit status specified by n. The value will be
the least significant 8 bits of the specified status. If n is
omitted, then the return status is that of the last command exe?
cuted. If return is invoked while not in a function or a .
script, then it behaves the same as exit.
? set [?BCGHabefhkmnprstuvx][?0 [option]] ... [?2Avname] [
arg ... |
The options for this command have meaning as follows:
-A Array assignment. Unset the variable vname and assign
values sequentially from the arg list. If +A is used,
the variable vname is not unset first.

-B Enable brace group expansion. On by default, except if Page 77/97

ksh is invoked as sh or rsh.

Prevents redirection > from truncating existing files.
Files that are created are opened with the O_EXCL mode.
Requires >| to truncate a file when turned on.

Enables recursive file name generation. This adds the
double-star pattern ** to the file generation mechanism
(see File Name Generation above). By itself, it matches
the recursive contents of the current directory, which
is to say, all files and directories in the current di?
rectory and in all its subdirectories, sub-subdirecto?
ries, and so on. If the pathname pattern ends in **/,
only directories and subdirectories are matched, includ?
ing symbolic links that point to directories. A pre?
fixed directory name is not included in the results un?
less that directory was itself found by a pattern. For
example, dir/** matches the recursive contents of dir
but not dir itself, whereas di[r]/** matches both dir
itself and the recursive contents of dir. Symbolic
links to non-directories are not followed. Symbolic
links to directories are followed if they are specified
literally or match a pattern as described under File
Name Generation, but not if they result from a double-
star pattern.

Enable !-style history expansion similar to csh(l).

All subsequent variables that are defined are automati?
cally exported.

Prints job completion messages as soon as a background
job changes state rather than waiting for the next
prompt.

Unless contained in a || or && command, or the command
following an if while or until command or in the pipe?
line following !, if a command has a non-zero exit sta?

tus, execute the ERR trap, if set, and exit. This mode

Page 78/97

is disabled while reading profiles.
Disables file name generation.

Each command becomes a tracked alias when first encoun?
tered.

(Obsolete). All variable assignment arguments are placed
in the environment for a command, not just those that
precede the command name.

Background jobs will run in a separate process group and
a line will print upon completion. The exit status of
background jobs is reported in a completion message. On
systems with job control, this option is turned on auto?
matically for interactive shells.

Read commands and check them for syntax errors, but do
not execute them. Ignored for interactive shells.

The following argument can be one of the following op?
tion names:
allexport
Same as -a.
backslashctrl
The backslash character \ escapes the next con?
trol character in the emacs built-in editor and
the next erase or kill character in the vi
built-in editor. On by default.
bgnice All background jobs are run at a lower priority.
This is the default mode.
braceexpand
Same as -B.
emacs Puts you in an emacs style in-line editor for
command entry.
errexit Same as -e.
globcasedetect
When this option is turned on, globbing (see

File Name Generation above) and file name list?

Page 79/97

ing and completion (see In-line Editing Options
above) automatically become case-insensitive on
file systems where the difference between upper-
and lowercase is ignored for file names. This is
transparently determined for each directory, so
a path pattern that spans multiple file systems
can be part case-sensitive and part case-insen?
sitive. In more precise terms, each slash-sepa?
rated path name component pattern p is treated
as ~(i:p) if its parent directory exists on a
case-insensitive file system. This option is
only present on operating systems that support
case-insensitive file systems.

globstar
Same as -G.

gmacs Puts you in a gmacs style in-line editor for
command entry.

histexpand
Same as -H.

ignoreeof
The shell will not exit on end-of-file. The
command exit must be used.

keyword Same as -k.

letoctal
The let command allows octal constants starting
with 0. On by default if ksh is invoked as sh
or rsh.

markdirs
All directory names resulting from file name
generation have a trailing / appended.

monitor Same as -m.

multiline

The built-in editors will use multiple lines on

Page 80/97

the screen for lines that are longer than the
width of the screen. This may not work for all
terminals.

noclobber
Same as -C.

noexec Same as -n.

noglob Same as -f.

nolog Obsolete; has no effect.

notify Same as -b.

nounset Same as -u.

pipefail
A pipeline will not complete until all compo?
nents of the pipeline have completed, and the
return value will be the value of the last non-
zero command to fail or zero if no command has
failed.

posix Enables the POSIX standard mode for maximum com?
patibility with other compliant shells. At the
moment that the posix option is turned on, it
also turns on letoctal and turns off -B/braceex?
pand; the reverse is done when posix is turned
back off. (These options can still be controlled
independently in between.) Furthermore, the
posix option is automatically turned on upon in?
vocation if ksh is invoked as sh or rsh. In that
case, or if the option is turned on by specify?
ing -0 posix on the invocation command line, the
invoked shell will not set the preset aliases
even if interactive, and will not import type
attributes for variables (such as integer or
readonly) from the environment.
In addition, while on, the posix option

? disables exporting variable type attributes Page 81/97

to the environment for other ksh processes to
import;

? causes file descriptors > 2 to be left open
when invoking another program;

? disables the &> redirection shorthand;

? makes the <> redirection operator default to
redirecting standard input if no file de?
scriptor number precedes it; and

? disables a hack that makes test -t ([-t])
equivalenttotest-t 1 ([-t1]).

privileged
Same as -p.

showme When enabled, simple commands or pipelines pre?
ceded by a semicolon (;) will be displayed as if
the xtrace option were enabled but will not be
executed. Otherwise, the leading ; will be ig?
nored.

trackall
Same as -h.

verbose Same as -v.

vi Puts you in insert mode of a vi style in-line

editor until you hit the escape character 033.

This puts you in control mode. A return sends

the line.

viraw Each character is processed as it is typed in vi
mode. The shell may have been compiled to force
this option on at all times. Otherwise, canoni?

cal processing (line-by-line input) is initially

enabled and the command line will be echoed
again if the speed is 1200 baud or greater and

it contains any control characters or less than

one second has elapsed since the prompt was

printed. The ESC character terminates canonical Page 82/97

processing for the remainder of the command and
the user can then modify the command line. This
scheme has the advantages of canonical process?
ing with the type-ahead echoing of raw mode. If
the viraw option is set, the terminal will al?
ways have canonical processing disabled. This
mode is implicit for systems that do not support
two alternate end of line delimiters, and may be
helpful for certain terminals.
xtrace Same as -x.
If no option name is supplied, then the current option
settings are printed.
-p Disables processing of the $HOME/.profile file and uses
the file /etc/suid_profile instead of the ENV file.
This mode is on whenever the effective uid (gid) is not
equal to the real uid (gid). Turning this off causes
the effective uid and gid to be set to the real uid and
gid.
-r Enables the restricted shell. This option cannot be un?
set once set.
-s Sort the positional parameters lexicographically.
-t (Obsolete). Exit after reading and executing one com?
mand.
-u Treat unset parameters as an error when substituting.
$@ and $* are exempt.
-v Print shell input lines as they are read.
-Xx Print commands and their arguments as they are executed.
-- Do not change any of the options; useful in setting $1
to a value beginning with -. If no arguments follow
this option then the positional parameters are unset.
As an obsolete feature, if the first arg is - then the -x and -v
options are turned off and the next arg is treated as the first

argument. Using + rather than - causes these options to be

Page 83/97

turned off. These options can also be used upon invocation of
the shell. The current set of options may be found in $-. Un?
less -A is specified, the remaining arguments are positional pa?
rameters and are assigned, in order, to $1 $2 If no argu?
ments are given, then the names and values of all variables are
printed on the standard output.

? shift[n]
The positional parameters from $n+1 ... are renamed $1 ...,
default nis 1. The parameter n can be any arithmetic expres?
sion that evaluates to a non-negative number less than or equal
to $#.

sleep [-s] duration
Suspends execution for the number of decimal seconds or frac?
tions of a second given by duration. duration can be an inte?
ger, floating point value or ISO 8601 duration specifying the
length of time to sleep. The option -s causes the sleep builtin
to terminate when it receives any signal. If duration is not
specified in conjunction with -s, sleep will wait for a signal
indefinitely.

source name [arg ...]
Same as ., except it is not treated as a special built-in com?
mand.

stop job ...
Sends a SIGSTOP signal to one or more processes specified by
job, suspending them until they receive SIGCONT. The same as
kill -s STOP.

suspend
Sends a SIGSTOP signal to the main shell process, suspending the
script or child shell session until it receives SIGCONT (for in?
stance, when typing fg in the parent shell). Equivalent to
kill -s STOP "3", except that it accepts no operands and re?
fuses to suspend a login shell.

test expression Page 84/97

The test and [commands execute conditional expressions similar
to those specified for the [[compound command under Conditional
Expressions above, but with several important differences. The
=, == and != operators test for string (in)equality without pat?
tern matching; the == variant is nonstandard and should not be
used. The =?, <, >, && and || operators are not available. Most
importantly, as test and [are simple regular commands, field
splitting and file name generation are performed on all their
arguments and all aspects of regular shell grammar (such as re?
direction) remain active. This is usually harmful, so care must
be taken to quote arguments and expansions to avoid this. There
are also certain inherent grammatical ambiguities in the expres?
sions. To avoid the many pitfalls arising from these issues, the
[[compound command should be used instead. The primary purpose
of the test and [commands is compatibility with other shells
that lack [[.
The test/[command does not parse options except if there are
two arguments and the second is --. To access the inline docu?
mentation with an option such as --man, you need one of the
forms test --man -- or [--man --].
times Displays the accumulated user and system CPU times, one line
with the times used by the shell and another with those used by
all of the shell's child processes. No options are supported.
?trap[-p][action][sig] ...
The -p option causes the trap action associated with each trap
as specified by the arguments to be printed with appropriate
quoting. Otherwise, action will be processed as if it were an
argument to eval when the shell receives signal(s) sig. Each
sig can be given as a number or as the name of the signal. Trap
commands are executed in order of signal number. Any attempt to
set atrap on a signal that was ignored on entry to the current
shell is ineffective. If action is omitted and the first sig is

a number, or if action is -, then the trap(s) for each sig are Page 85/97

reset to their original values. If action is the null string

then this signal is ignored by the shell and by the commands it
invokes. If sig is ERR then action will be executed whenever a
command has a non-zero exit status. If sig is DEBUG then action
will be executed before each command. The variable .sh.command
will contain the shell-quoted arguments of the current command
line when action is running. If the exit status of the trap is

2 the command will not be executed. If the exit status of the

trap is 255 and inside a function or a dot script, the function

or dot script will return. If sigis 0 or EXIT and the trap

statement is executed inside the body of a function defined with

the function name syntax, then the command action is executed
after the function completes. If sigis 0 or EXIT for a trap

set outside any function then the command action is executed on
exit from the shell. If sig is KEYBD, then action will be exe?

cuted whenever a key is read while in emacs, gmacs, or vi mode.
The trap command with no arguments prints a list of commands as?

sociated with each signal number.

An exit or return without an argument in a trap action will preserve

the exit status of the command that invoked the trap.

true Does nothing, and exits 0. Used with while for infinite loops.

type [-afpq] name ...

The same as whence -v.

?? typeset [2ACHSbflmnprstux] [?PEFLRXZi[n]] [+-M [mapname]]

[-T [tname=(assign_list)]][-h str][-a [type]] [vname[=value

1]

Sets attributes and values for shell variables and functions.
When invoked inside a function defined with the function name
syntax, a new instance of the variable vname is created, and the
variable's value and type are restored when the function com?
pletes. The following list of attributes may be specified:

-A Declares vname to be an associative array. Subscripts

are strings rather than arithmetic expressions.

Page 86/97

-C

Causes each vname to be a compound variable. If value
names a compound variable, it is copied into vname. Oth?
erwise, the empty compound value is assigned to vname.

Declares vname to be an indexed array. If type is speci?
fied, it must be the name of an enumeration type created
with the enum command and it allows enumeration constants
to be used as subscripts.

Declares vname to be a double precision floating point
number. If nis non-zero, it defines the number of sig?
nificant figures that are used when expanding vname.
Otherwise, ten significant figures will be used.

Declares vname to be a double precision floating point
number. If nis non-zero, it defines the number of
places after the decimal point that are used when expand?
ing vname. Otherwise ten places after the decimal point
will be used.

This option provides UNIX to host-name file mapping on
non-UNIX machines.

Left justify and remove leading blanks from value. If n
is non-zero, it defines the width of the field, otherwise
it is determined by the width of the value of first as?
signment. When the variable is assigned to, it is filled
on the right with blanks or truncated, if necessary, to
fitinto the field. The -R option is turned off.

Use the character mapping mapping defined by wctrans(3).
such as tolower and toupper when assigning a value to
each of the specified operands. When mapping is speci?
fied and there are not operands, all variables that use
this mapping are written to standard output. When map?
ping is omitted and there are no operands, all mapped
variables are written to standard output.

Right justify and fill with leading blanks. If n is non-

zero, it defines the width of the field, otherwise it is

Page 87/97

determined by the width of the value of first assignment.
The field is left filled with blanks or truncated from

the end if the variable is reassigned. The -L option is
turned off.

When used within the assign_list of a type definition, it
causes the specified sub-variable to be shared by all in?
stances of the type. When used inside a function defined
with the function reserved word, the specified variables
will have function static scope. Otherwise, the variable
is unset prior to processing the assignment list.

If followed by tname, it creates a type named by thame
using the compound assignment assign_list to thame. Oth?
erwise, it writes all the type definitions to standard
output.

Declares vname to be a double precision floating point
number and expands using the %a format of ISO-C99. If n
is non-zero, it defines the number of hex digits after
the radix point that is used when expanding vname. The
default is 10.

Right justify and fill with leading zeros if the first
non-blank character is a digit and the -L option has not
been set. Remove leading zeros if the -L option is also
set. If n is non-zero, it defines the width of the
field, otherwise it is determined by the width of the
value of first assignment.

The names refer to function names rather than variable
names. No assignments can be made and the only other
valid options are -S, -t, -u and -x. The -S can be used

with discipline functions defined in a type to indicate

that the function is static. For a static function, the

same method will be used by all instances of that type no
matter which instance references it. In addition, it can

only use value of variables from the original type defi?

Page 88/97

nition. These discipline functions cannot be redefined

in any type instance. The -t option turns on execution
tracing for this function. The -u option causes this
function to be marked undefined. The FPATH variable will
be searched to find the function definition when the
function is referenced. If no options other than -f is
specified, then the function definition will be displayed

on standard output. If +f is specified, then a line con?
taining the function name followed by a shell comment
containing the line number and path name of the file
where this function was defined, if any, is displayed.
The exit status can be used to determine whether the
function is defined so that typeset -f .sh.math.name will
return O when math function name is defined and non-zero
otherwise.

The variable can hold any number of bytes of data. The
data can be text or binary. The value is represented by
the base64 encoding of the data. If -Z is also speci?
fied, the size in bytes of the data in the buffer will be
determined by the size associated with the -Z. If the
base64 string assigned results in more data, it will be
truncated. Otherwise, it will be filled with bytes whose
value is zero. The printf format %B can be used to out?
put the actual data in this buffer instead of the base64
encoding of the data.

Used within type definitions to add information when gen?
erating information about the sub-variable on the man
page. Itis ignored when used outside of a type defini?
tion. When used with -f the information is associated
with the corresponding discipline function.

Declares vname to be represented internally as integer.
The right hand side of an assignment is evaluated as an

arithmetic expression when assigning to an integer. If n

Page 89/97

is non-zero, it defines the output arithmetic base, oth?
erwise the output base will be ten.

-l Used with -i, -E or -F, to indicate long integer, or long
float. Otherwise, all upper-case characters are con?
verted to lower-case. The upper-case option, -u, is
turned off. Equivalent to -M tolower .

-m moves or renames the variable. The value is the name of
a variable whose value will be moved to vname. The orig?
inal variable will be unset. Cannot be used with any
other options.

-n Declares vname to be a reference to the variable whose
name is defined by the value of variable vname. This is
usually used to reference a variable inside a function
whose name has been passed as an argument. Cannot be
used with any other options.

-p The name, attributes and values for the given vnames are
written on standard output in a form that can be used as
shell input. If +p is specified, then the values are not
displayed.

-r The given vnames are marked readonly and these names can?
not be changed by subsequent assignment.

-s When given along with -i, restricts integer size to
short.

-t Tags the variables. Tags are user definable and have no
special meaning to the shell.

-u When given along with -i, specifies unsigned integer.
Otherwise, all lower-case characters are converted to up?
per-case. The lower-case option, -I, is turned off.
Equivalent to -M toupper .

-X The given vnames are marked for automatic export to the
environment of subsequently-executed commands. Variables
whose names contain a . cannot be exported.

The -i, -F, -E, and -X options cannot be specified along with

Page 90/97

-R, -L, or -Z. The -b option cannot be specified along with -L,
-u, or -l. The -f, -m, -n, and -T options cannot be used to?
gether with any other option.
Using + rather than - causes these options to be turned off. If
no vname arguments are given, a list of vnames (and optionally
the values) of the variables is printed. (Using + rather than -
keeps the values from being printed.) The -p option causes
typeset followed by the option letters to be printed before each
name rather than the names of the options. If any option other
than -p is given, only those variables which have all of the
given options are printed. Otherwise, the vnames and attributes
of all variables that have attributes are printed.

ulimit [-HSaMctdfxlgenupmrbiswTv] [limit]
Set or display a resource limit. The available resource limits
are listed below. Many systems do not support one or more of
these limits. The limit for a specified resource is set when
limit is specified. The value of limit can be a number in the
unit specified below with each resource, or the value unlimited.
The -H and -S options specify whether the hard limit or the soft
limit for the given resource is set. A hard limit cannot be in?
creased once it is set. A soft limit can be increased up to the
value of the hard limit. If neither the H nor S option is spec?
ified, the limit applies to both. The current resource limit is
printed when limit is omitted. In this case, the soft limit is
printed unless H is specified. When more than one resource is
specified, then the limit name and unit is printed before the
value.
-a Lists all of the current resource limits.
-b The socket buffer size in bytes.
-c The number of 512-byte blocks on the size of core dumps.
-d The number of K-bytes on the size of the data area.
-e The scheduling priority.

-f The number of 512-byte blocks on files that can be writ? Page 91/97

ten by the current process or by child processes (files
of any size may be read).
-i The signal queue size.
-l The locked address space in K-bytes.
-M The address space limit in K-bytes.
-m The number of K-bytes on the size of physical memory.
-n The number of file descriptors plus 1.
-p The number of 512-byte blocks for pipe buffering.
-g The message queue size in K-bytes.
-r The max real-time priority.
-s The number of K-bytes on the size of the stack area.
-T The number of threads.
-t The number of CPU seconds to be used by each process.
-u The number of processes.
-v The number of K-bytes for virtual memory.
-w The swap size in K-bytes.
-X The number of file locks.
If no option is given, -f is assumed.
umask [-S][mask]
The user file-creation mask is set to mask (see umask(2)). mask
can either be an octal number or a symbolic value as described
in chmod(). If a symbolic value is given, the new umask value
is the complement of the result of applying mask to the comple?
ment of the previous umask value. If mask is omitted, the cur?
rent value of the mask is printed. The -S option causes the
mode to be printed as a symbolic value. Otherwise, the mask is
printed in octal.
unalias [-a] name ...
The aliases given by the list of nhames are removed from the
alias list. The -a option causes all the aliases to be unset.
? unset [-fnv] vname ...
The variables given by the list of vnames are unassigned, i.e.,

except for sub-variables within a type, their values and at? Page 92/97

tributes are erased. For sub-variables of a type, the values
are reset to the default value from the type definition. Read?
only variables cannot be unset. If the -f option is set, then
the names refer to function names. If the -v option is set,
then the names refer to variable names. The -f option overrides
-v. If -nis set and name is a name reference, then name will
be unset rather than the variable that it references. The de?
fault is equivalent to -v. Unsetting LINENO, MAILCHECK, OPTARG,
OPTIND, RANDOM, SECONDS, TMOUT, and _ removes their special
meaning even if they are subsequently assigned to.
wait [job ...]
Wait for the specified job and report its termination status.
If job is not given, then all currently active child processes
are waited for. The exit status from this command is that of
the last process waited for if job is specified; otherwise it is
zero. See Jobs for a description of the format of job.
whence [-afpqv] name ...
For each name, indicate how it would be interpreted if used as a
command name.
The -v option produces a more verbose report. The -f option
skips the search for functions. The -p option does a path
search for name even if name is an alias, a function, or a re?
served word. The -p option turns off the -v option. The -q op?
tion causes whence to enter quiet mode. whence will return zero
if all arguments are built-ins, functions, or are programs found
on the path. The -a option is similar to the -v option but
causes all interpretations of the given name to be reported.
Invocation.
If the shell is invoked by exec(2), initialization depends on argument
zero ($0) as follows. If the first character of $0 is -, or the -I op?
tion is given on the invocation command line, then the shell is assumed
to be a login shell. If the basename of the command path in $0 is rsh,

rksh, or krsh, then the shell becomes restricted. If the basename is Page 93/97

sh or rsh, or the -0 posix option is given on the invocation command
line, then the shell is initialized in full POSIX compliance mode (see
the set builtin command above for more information). After this, if
the shell was assumed to be a login shell, commands are read from
[etc/profile and then from $SHOME/.profile if it exists. Alternatively,
the option -l causes the shell to be treated as a login shell. Next,
for interactive shells, commands are read from the file named by ENV if
the file exists, its name being determined by performing parameter ex?
pansion, command substitution, and arithmetic substitution on the value
of that environment variable. If the -s option is not present and arg
and a file by the name of arg exists, then it reads and executes this
script. Otherwise, if the first arg does not contain a /, a path
search is performed on the first arg to determine the name of the
script to execute. The script arg must have execute permission and any
setuid and setgid settings will be ignored. If the script is not found
on the path, arg is processed as if it named a built-in command or
function. Commands are then read as described below; the following op?
tions are interpreted by the shell when it is invoked:
-D Alist of all double quoted strings that are preceded by a $
will be printed on standard output and the shell will exit.
This set of strings will be subject to language translation
when the locale is not C or POSIX. No commands will be exe?
cuted.
-Eor-orcor--rc
Read the file named by the ENV variable or by $HOME/.kshrc if
not defined after the profiles. On by default for interactive
shells. Use +E, +o rc or --norc to turn off.
-c Read and execute a script from the first arg instead of a file.
The second arg, if present, becomes that script's command name
($0). Any third and further args become positional parameters
starting at $1.
-s Read and execute a script from standard input instead of a

file. The command name ($0) cannot be set. Any args become

Page 94/97

the positional parameters starting at $1. This option is
forced on if no arg is given and is ignored if -c is also spec?
ified.
-i or -0 interactive or --interactive
If the -i option is present or if the shell's standard input
and standard error are attached to a terminal (as told by tcge?
tattr(3)), then this shell is interactive. In this case TERM
is ignored (so that kill 0 does not kill an interactive shell)
and INTR is caught and ignored (so that wait is interruptible).
In all cases, QUIT is ignored by the shell.
-r or -0 restricted or --restricted
If the -r option is present, the shell is a restricted shell.
The remaining options and arguments are described under the set command
above. An optional - as the first argument is ignored.
Rksh Only.
Rksh is used to set up login names and execution environments whose ca?
pabilities are more controlled than those of the standard shell. The
actions of rksh are identical to those of ksh, except that the follow?
ing are disallowed:
unsetting the restricted option,
changing directory (see cd(1)),
setting or unsetting the value or attributes of SHELL, ENV,
FPATH, or PATH,
specifying path or command names containing /,
redirecting output (>, >|, <>, and >>),
adding or deleting built-in commands,
using command -p to invoke a command.
The restrictions above are enforced after .profile and the ENV files
are interpreted.
When a command to be executed is found to be a shell procedure, rksh
invokes ksh to execute it. Thus, it is possible to provide to the end-
user shell procedures that have access to the full power of the stan?

dard shell, while imposing a limited menu of commands; this scheme as? Page 95/97

sumes that the end-user does not have write and execute permissions in
the same directory.
The net effect of these rules is that the writer of the .profile has
complete control over user actions, by performing guaranteed setup ac?
tions and leaving the user in an appropriate directory (probably not
the login directory).
The system administrator often sets up a directory of commands (e.g.,
{usr/rbin) that can be safely invoked by rksh.
EXIT STATUS
Errors detected by the shell, such as syntax errors, cause the shell to
return a non-zero exit status. If the shell is being used non-interac?
tively, then execution of the shell file is abandoned unless the error
occurs inside a subshell in which case the subshell is abandoned. Oth?
erwise, the shell returns the exit status of the last command executed
(see also the exit command above). Run time errors detected by the
shell are reported by printing the command or function name and the er?
ror condition. If the line number that the error occurred on is
greater than one, then the line number is also printed in square brack?
ets ([]) after the command or function name.
FILES

/etc/profile

The system wide initialization file, executed for login shells.
$HOME/.profile

The personal initialization file, executed for login shells af?

ter /etc/profile.
$HOME/ kshrc

Default personal initialization file, executed for interactive

shells when ENV is not set.
letc/suid_profile

Alternative initialization file, executed instead of the per?

sonal initialization file when the real and effective user or

group id do not match.

/devinull Page 96/97

NULL device

SEE ALSO
cat(1), cd(1), chmod(1), cut(1), date(1), egrep(1), echo(1), emacs(1),
env(l), fgrep(1l), gmacs(1), grep(l), pfexec(l), stty(1), test(1),
umask(1), vi(1), dup(2), exec(2), fork(2), getpwnam(3), ioctl(2),
Iseek(2), paste(l), pathconf(2), pipe(2), sysconf(3), umask(2),
ulimit(2), wait(2), strftime(3), wctrans(3), rand(3), a.out(5), pro?
file(5), environ(7).
Morris |. Bolsky and David G. Korn, The New KornShell Command and Pro?
gramming Language, Prentice Hall, 1995.
POSIX - Part 2: Shell and Utilities, IEEE Std 1003.2-1992, ISO/IEC
9945-2, IEEE, 1993.

CAVEATS
If a command is executed, and then a command with the same name is in?
stalled in a directory in the search path before the directory where
the original command was found, the shell will continue to exec the
original command. Use the hash command or the -t option of the alias
command to correct this situation.
Some very old shell scripts contain a * as a synonym for the pipe char?
acter |.
Using the hist built-in command within a compound command will cause
the whole command to disappear from the history file.
The built-in command . file reads the whole file before any commands
are executed. Therefore, alias and unalias commands in the file will
not apply to any commands defined in the file.
Traps are not processed while a job is waiting for a foreground
process. Thus, a trap on CHLD won't be executed until the foreground
job terminates.
It is a good idea to leave a space after the comma operator in arith?
metic expressions to prevent the comma from being interpreted as the
decimal point character in certain locales.

KSH(1)

Page 97/97

